Physics, asked by phoenix983, 11 months ago

A particle performing linear S.H.M. has
maximum velocity of 20 cm/s and maximum
acceleration of 80 cm/s2.Find the amplitude and
period of oscillation.​

Answers

Answered by nirman95
24

Answer:

Given :

Max Velocity is 20 cm/s

Max acceleration = 80 cm/s²

To find:

Amplitude and time period

Calculation:

Max Velocity = ωA

=> ωA = 20 cm/s .......eq(1)

Max Acceleration = (ω²)A

=> (ω²)A = 80 cm/s² .........eq.(2)

Dividing eq(2) by eq(1)

=> ω = 4 Hz

Time period = 2π/ω

=> Time period = 2π/4

=> Time period = π/2 seconds

Amplitude = 20/ω .....from eq.(1)

=> Amplitude = 20/(4)

=> Amplitude = 5 cm.

So final answer :

 amplitude =  5 \: cm \\  time \: period =  \dfrac{\pi}{2} seconds

Answered by Anonymous
117

\huge{\underline{\underline{\sf{\pink{Answer:-}}}}}

{\underline{\underline{\color{darkblue}\bf{Given:-}}}}

•Max velocity= 20 cm/s

•Max acceleration= 80 cm/s²

{\underline{\underline{\color{darkblue}\bf{To\: Find:-}}}}

• Amplitude=??

• Time period=??

{\underline{\underline{\color{darkblue}\bf{Solution:-}}}}

ATQ,

\sf{\omega\:A=20 ......(1)}

\sf{\omega^{2}\:A=80.....(2)}

Dividing (2) by (1) ,

  \sf{{ \frac{\omega { \cancel{{}^{2} }} { \cancel{\:A }}}{ { \cancel{\omega}}\:{ \cancel{ A} }}}=  \frac{8 {\cancel{0}}}{2{ \cancel{0} }}} \\  \\  { \sf{\omega = 4}} \\

Frequency= 4 Hz

Now, Time period= </p><p>\huge{\sf{\frac{2\pi}{\omega}}}

  \sf{\frac{ \cancel{2}\pi}{ \cancel4}} \\  \\  \:  { \boxed{\sf{time  \: period =  \frac{\pi}{2} \: s}}}

A=\huge{\sf{\frac{20}{4}}}....from(1)

A = 5 cm

  \boxed{\sf{amplitude = 5\:cm}}

Similar questions