a particle projected from ground at angle 45 degrees with horizontal from distance 'd1' from the foot of a pole and just after touching the top of pole it falls on ground at a distance 'd2' from pole on other side, then what is the height of pole?
Answers
Answered by
401
two dimensional projectile, :
x = u cosФ * t = u t/√2 as Ф = π/4
and, y = u sinФ t - 1/2 g t² = u/√2 - 1/2 g t²
y = x - g x² / u² as tanФ = 1 and cosФ =1/√2
let us take the coordinates of the point of projection as, (0, 0).
when x = d1, y = h = height o f the pole.
so h = d1 - g d1² / u² -- (1)
when x = d1 + d2, y = 0, hence,
so 0 = (d1+d2) - g (d1 + d2)² / u²
=> u² = g (d1 + d2) --- (2)
substituting this (2) in (1) we get:
h = d1 - d1² /(d1+d2) = d1 * d2 / (d1 + d2)
So the answer is d1 * d2 / [ d1 + d2 ]
x = u cosФ * t = u t/√2 as Ф = π/4
and, y = u sinФ t - 1/2 g t² = u/√2 - 1/2 g t²
y = x - g x² / u² as tanФ = 1 and cosФ =1/√2
let us take the coordinates of the point of projection as, (0, 0).
when x = d1, y = h = height o f the pole.
so h = d1 - g d1² / u² -- (1)
when x = d1 + d2, y = 0, hence,
so 0 = (d1+d2) - g (d1 + d2)² / u²
=> u² = g (d1 + d2) --- (2)
substituting this (2) in (1) we get:
h = d1 - d1² /(d1+d2) = d1 * d2 / (d1 + d2)
So the answer is d1 * d2 / [ d1 + d2 ]
kvnmurty:
click on thanks button above please
Answered by
9
Explanation:
Pls see the pic attached
Hope it helps!!
Attachments:
Similar questions