Physics, asked by linsavarghese07, 7 hours ago

a particle projected with a velocity 49m/s at one angle 30 to the horizontal. calculate the maximum height time of flight and horizontal range​

Answers

Answered by Anonymous
13

Topic :- Motion in Plane

\maltese\:\underline{\underline{\textsf{\textbf{AnsWer :}}}}\:\maltese

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

✏ As we know that acceleration in Horizontal direction is always zero \sf a_x = 0. Hence, the velocity in the horizontal direction is constant.

✏Initial velocity in the vertical direction is given as \sf U_y = 49 \:m/s.

✏The angle of projection is given as 30°.

✏We need to find the Maximum Height (H) attained by the particle, Time of flight (T) and Horizontal Range (R).

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

CALCULATION

First we will find the maximum height attained by the body :

\longrightarrow\:\:\sf Maximum \:  Height_{(attained \:  by \:  the \:  body)} = \dfrac{(u _{y})^{2} }{2g} \\

\longrightarrow\:\:\sf Maximum \:  Height_{(attained \:  by \:  the \:  body)} = \dfrac{u^2  \sin^2 (\theta)}{2g} \\

\longrightarrow\:\:\sf Maximum \:  Height_{(attained \:  by \:  the \:  body)} = \dfrac{(49)^2  \sin^2 ( {30}^{ \circ} )}{2 \times 10} \\

\longrightarrow\:\:\sf Maximum \:  Height_{(attained \:  by \:  the \:  body)} = \dfrac{2401 \times  ( \frac{1}{2} )^{2} }{20} \\

\longrightarrow\:\:\sf Maximum \:  Height_{(attained \:  by \:  the \:  body)} = \dfrac{2401 \times  \frac{1}{4}  }{20} \\

\longrightarrow\:\:\sf Maximum \:  Height_{(attained \:  by \:  the \:  body)} = \dfrac{600.25  }{20} \\

\longrightarrow\:\: \underline{ \underline{\sf Maximum \:  Height_{(attained \:  by \:  the \:  body)} = 30.0125 \: m}} \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Now, let's find Time of flight (T) :

\longrightarrow\:\:\sf Time \: of \: Flight= \dfrac{2u_y}{g} \\

\longrightarrow\:\:\sf Time \: of \: Flight= \dfrac{2u \sin( \theta) }{g} \\

\longrightarrow\:\:\sf Time \: of \: Flight= \dfrac{2 \times 49 \sin(  {30}^{ \circ} ) }{10} \\

\longrightarrow\:\:\sf Time \: of \: Flight= \dfrac{90 \sin(  {30}^{ \circ} ) }{10} \\

\longrightarrow\:\:\sf Time \: of \: Flight=9 \sin(  {30}^{ \circ} ) \\

\longrightarrow\:\:\sf Time \: of \: Flight=9  \times  \dfrac{1}{2}  \\

\longrightarrow\:\: \underline{ \underline{\sf Time \: of \: Flight=4.5 \: s}} \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Finding the Horizontal Range (R) :

\longrightarrow\:\:\sf Horizontal \: Range = \dfrac{u^2 \sin2( \theta) }{g} \\

\longrightarrow\:\:\sf Horizontal \: Range = \dfrac{(49)^{2}  \sin2( {30}^{ \circ} ) }{10} \\

\longrightarrow\:\:\sf Horizontal \: Range = \dfrac{2401 \times  2 \times   \frac{1}{2}   }{10} \\

\longrightarrow\:\:\sf Horizontal \: Range = \dfrac{2401}{10} \\

\longrightarrow\:\: \underline{ \underline{\sf Horizontal \: Range = 240.1 \: m}} \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Similar questions