Physics, asked by ashwatiunair9182, 11 months ago

A particle's velocity changes from (2hat I +3 hatj) ms^(-1) in to (3 hati - 2hatj) ms^(-1) in 2s. Its average acceleration in ms^(-2) is

Answers

Answered by LeParfait
0

Given:

  • Initial velocity, \mathsf{\vec{v}_{1}=2\hat{i}+3\hat{j}\:ms^{-1}}
  • Terminal velocity, \small{\mathsf{\vec{v}_{2}=3\hat{i}-2\hat{j}\:ms^{-1}}}
  • Time, \mathsf{t=2\:s}

To find: average acceleration in \mathsf{ms^{-2}}

Solution:

Here, average acceleration

\quad\mathsf{=\dfrac{\vec{v}_{2}-\vec{v}_{1}}{t}\:ms^{-2}}

\quad\mathsf{=\dfrac{(3\hat{i}-2\hat{j})-(2\hat{i}+3\hat{j})}{2}\:ms^{-2}}

\quad\mathsf{=\dfrac{3\hat{i}-2\hat{j}-2\hat{i}-3\hat{j}}{2}\:ms^{-2}}

\quad\mathsf{=\dfrac{\hat{i}-5\hat{j}}{2}\:ms^{-2}}

Similar questions