Physics, asked by angelvaz21rodrigues, 9 months ago

a particle starting from rest undergoes acceleration given a = |t-2| m/s2. find the vel of particle after 4s​

Answers

Answered by kmaryamkhan2332
0

Answer:

sleep ok

Explanation:

Answered by Anonymous
1

\small{\fcolorbox{red}{indigo}{\small{\fcolorbox{red}{violet}{\small{\fcolorbox{red}{pink} {\small{\fcolorbox{red}{red}{\small{\fcolorbox{red}{springgreen}{\small{\fcolorbox{red}{blue}{\small{\fcolorbox{red}{yellow} {\small{\fcolorbox{red}{azure} {\small{\fcolorbox{red}{blue}{\small{\fcolorbox{red}{orange}{\huge{\fcolorbox{red}{green}{\large{\fcolorbox{blue}{red}{{\fcolorbox{orange}{aqua}{ANSWER}}}}}}}}}}}}}}}}}}}}}}}}}}

\green{\tt{\therefore{Velocity=10.34\:m/s}}}

\green{\tt{\therefore{Distance=17.1\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Fiven :}} \\  \tt: \implies a = 2 \sqrt{t}  \\  \\ \tt: \implies t = 4 \: sec \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Velocity_{ (at \: t  = 4 \: sec) } = ? \\  \\ \tt:  \implies Displacement_{ (at \: t  = 4 \: sec) } =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies a = 2 \sqrt{t}  \\  \\ \tt:  \implies  \frac{dv}{dt}  = 2t^{ \frac{1}{2} }  \\  \\ \tt:  \implies dv = 2  {t}^{ \frac{1}{2} }  \times dt \\  \\  \text{Both \: side \: integrating} \\  \\ \tt:  \implies   \int dv =  \int 2 {t}^{ \frac{1}{2} }   \times dt \\  \\ \tt:  \implies   \int dv = 2 \int   {t}^{ \frac{1}{2}  }  \times dt \\  \\ \tt:  \implies   \int   \limits_{0}^{v}   dv = 2 \int  \limits  _{0}^{ 4}  \frac{ {t}^{ \frac{1}{2} + 1  } }{ \frac{3}{2}}  \\  \\ \tt:  \implies   v =2 \int  \limits  _{0}^{ 4} \frac{2t^\frac{3}{2}}{3}\\  \\  \tt:  \implies v = 2 \times 2 \times \frac{4^{\frac{3}{2}}}{3}

 \tt:  \implies v = 4 \times  \frac{8}{3}  \\  \\  \green{\tt:  \implies v =  \frac{32}{3}  = 10.67 \: m/s}

\bold{For\:Displacement}\\ \tt :  \implies v =  \frac{4t^\frac{3}{2} }{3}  \\  \\  \tt :  \implies  \frac{dx}{dt}  =  \frac{4 {t}^{ \frac{3}{2} } }{3}  \\  \\ \tt :  \implies dx =  \frac{4 {t}^{ \frac{3}{2} } }{3}  \times dt \\  \\  \text{Integrating \: both \: side} \\  \\  \tt:  \implies   \int dx=  \int  \frac{4 {t}^{ \frac{3}{2} } }{3}  \times dt \\  \\ \tt:  \implies   \int dv =  \frac{4}{3}  \int   {t}^{  \frac{3}{2}   }  \times dt \\  \\ \tt:  \implies   \int   \limits_{0}^{x}   dx =  \frac{4}{3}  \int  \limits  _{0}^{ 4}  \frac{ {t}^{ \frac{3}{2} + 1 } }{ \frac{3}{2} + 1}  \\  \\ \tt:  \implies   x = \frac{4}{3}  \int  \limits  _{0}^{ 4} \frac{2t^\frac{5}{2}}{5}\\  \\  \tt:  \implies x =  \frac{4}{3}  \times 2\times \frac{4^{\frac{5}{2}}}{5} \\  \\ \tt:  \implies x =  \frac{8}{3}  \times  \frac{32}{5}  \\  \\ \tt:  \implies x =  \frac{256}{15}  \\  \\  \green{\tt:  \implies x = 17.1 \: m}

Similar questions