Physics, asked by SƬᏗᏒᏇᏗƦƦᎥᎧƦ, 2 months ago

A particle starts to move in a straight line from a point with velocity:
10ms {}^{ - 1}
and acceleration:
 - 2.0ms {}^{ - 2}
Find the position and velocity of the particle at
(i) t = 5s
(ii) t = 10 s
________________________

✔️ Explained answers only
❌ No copied answer


Answers

Answered by ravillarajendra19793
3

Answer:

1 option is true I know I saw that question so many times in my book

Explanation:

ok a

Answered by OtakuSama
71

  \huge{ \underbrace{ \text{Question}}}

A particle starts to move in a straight line from a point with velocity:

 \sf{10ms {}^{ - 1} }

and acceleration:

 \sf{ -  2.0ms {}^{ - 2} }

Find the position and velocity of the particle at

(i) t = 5s

(ii) t = 10 s

 \huge{ \underbrace{ \text{Answer}}}

Given:-

 \sf{ \rightarrow{Initial \: velocity   \: \bold{u}\: of \: the \: article = 10ms {}^{ - 1} }}

 \sf{ \rightarrow{Acceleration \:  \bold{a} \: of \: the \: article \: =  - 2.0ms {}^{ - 2} }}

To Find:-

 \sf{ \rightarrow{The \: position \: and \: velocity \: of \: the \: article \: when, }}

 \sf{i)t = 5s} \\  \sf{ii)t = 10s}

Solution:-

First, let's find the velocity of the article.

As we know that,

 \boxed{ \sf{ \blue{ \bold{v} = u + at}}}

Where,

  • v stands for velocity
  • u stands for initial velocity
  • a stands for acceleration
  • t stands for time

Now, according to the question,

If t = 5s,

 \sf{ \bold{v} = 10ms {}^{ - 1}  + ( - 2.0 {ms}^{ - 2})  \times 5s}

\\  \sf{ \implies{ \bold{v} = 10ms {}^{ - 1}  - 2.0 {ms}^{ - 2}  \times 5s}}

\\  \sf{  \implies{\bold{v} = 10ms {}^{ - 1}  - 10ms {}^{ - 1} }}

 \\  \sf{ \therefore{ \bold{ v} = \orange{ 0ms {}^{ - 1} }}}

Again,

If t = 10s,

 \sf{ \bold{v} = 10ms {}^{ - 1}  + ( - 2.0 {ms}^{ - 2})  \times 10s}

\\  \sf{ \implies{ \bold{v} = 10ms {}^{ - 1}  - 2.0 {ms}^{ - 2}  \times 10s}}

\\  \sf{  \implies{\bold{v} = 10ms {}^{ - 1}  - 20ms {}^{ - 1} }}

 \\ \sf{ \therefore{ \bold{ v} = \orange{  - 10ms {}^{ - 1} }}}

Now,

Let's find the position of the article.

As we know that,

 \sf{ \boxed{ \blue{ \bold{s = ut +  \frac{1}{2} a {t}^{2} }}}}

Where,

  • s stands for position
  • u stands for initial velocity
  • a stands for acceleration
  • t stands for time

Now, according to the question,

If t = 5s

 \sf{ \bold{s }= 10 {ms}^{ - 1}  \times 5s +  \frac{1}{2}  \times ( - 2.0 {ms}^{ - 2} ) \times  {5s}^{2} }

 \\ \sf{ \implies{ \bold{s }= 50m +  \frac{1}{2}  \times ( - 50m)}}

 \\  \sf{ \implies{ \bold{s} = 50m +( - 25m)}}

  \\  \sf{ \implies{ \bold{s} = 50m - 25m}}

  \\  \sf{ \therefore{ \bold{s} =  \orange{25m}}}

Again,

If t = 10s,

 \sf{ \bold{s }= 10 {ms}^{ - 1}  \times 10s +  \frac{1}{2}  \times ( - 2.0 {ms}^{ - 2} ) \times  {10s}^{2} }

\\ \sf{ \implies{ \bold{s }= 100m +  \frac{1}{2}  \times ( - 200m)}}

 \\  \sf{ \implies{ \bold{s} = 100m +( - 100m)}}

  \\  \sf{ \implies{ \bold{s} = 100m - 100m}}

  \\  \sf{ \therefore{ \bold{s} =  \orange{0m}}}

  \underline{ \rm{Hence \: velocity \: of \: the \: article \: is \: \bold{ 0 {ms}^{ - 1}}  \: when \:  \bold{t = 5s}}}

 \underline{ \rm{Velocity \: of \: the \: article \: is \: \bold{  - 10{ms}^{ - 1}}  \: when \:  \bold{t = 10s}}}

 \underline{ \rm{Position \: of \: the \: article \: is \: \bold{  25m} \: when \:  \bold{t = 5s}}}

\underline{ \rm{Position \: of \: the \: article \: is \: \bold{  0m} \: when \:  \bold{t = 10s}}}

Similar questions