Physics, asked by kavitadhaka, 10 months ago

A particle thrown vectically up with an intial velocity 9m/s from the surface of earth (take=10m/s^2) . The time (in sec.)taken by the particle to reach a height of 4m from the surface second tiime (in second) is

Answers

Answered by Ankit039596
39

Answer:

plz search on doubt nut which can help u properly

Explanation:

follow me and mark me as brainlist

Answered by Anonymous
114

\sf\Large{\underbrace{\purple{Answer\implies 1\:sec}}}

\sf\large{\underline{\underline{Given:}}}

\sf{Innitial\:velocity\:(u) = 9\:m/s}

\sf{Height = 4\:m}

\sf{Acceleration\:(g) = 10\:m/{s}^{2}}

\sf\large{\underline{\underline{To\:Find:}}}

\sf{Time\:took\:reach\:at\:the\:height\:of\:4\:m = ....?}

\sf\large{\underline{\underline{SoLUtION:}}}

\sf{Time\:taken\:by\:the\:particle\:to\:reach\:a\:height\:(h)}\sf{from\:the\:surface\:of\:Earth\:is\:obtained\:from..}

\sf\red{\implies h = ut - \dfrac{1}{2}g{t}^{2}}

\sf{\underline{\underline{Given:}}}

\sf{ u = 9\:m/s}

\sf{ h = 4\:m}

\sf{ g = 10\:m/{s}^{2}}

\sf{\underline{\underline{Therefore:}}}

\sf{\purple{\implies  4 = 9t - \dfrac{1}{2} \times 10 \times {t}^{2}}}

\sf{\orange{\implies 4 = 9t - 5{t}^{2}}}

\sf{\green{\implies 5{t}^{2} - 9t + 4 = 0}}

\sf{\orange{\implies 5{t}^{2} - 5t - 4t + 4 = 0}}

\sf{\purple{\implies 5t(t - 1) - 4(t - 1) = 0}}

\sf{\underline{\underline{Therefore:}}}

\sf\red{ t = 1\:second\:or\: t = \dfrac{4}{5}\:second}

\sf\large{\underline{\underline{Hence:}}}

\sf{The\:time\:taken \:by\:the\:particle\:to\:reach\:a\:height\:of}\sf{4\:meter\:from\:the\:surface\:second\:time\:is\:1\:second.}

Similar questions