Physics, asked by Bbhhhsuhs, 11 months ago

A particles semicircular path of radius r. The ratio of distance travelled and displacement of particle will be:

Answers

Answered by nirman95
14

Answer:

Given:

Particle travels semicircle ( half of a circle).

To find:

Ratio of distance to displacement

Concept:

Distance is the total path length traversed by a body.

Displacement is the shortest length between starting and stopping point

Calculation:

For a semicircle :

 \star \:  \sf{distance =  \dfrac{2\pi r}{2}}

 \sf{ \star \: displacement \:  = 2r}

See the diagram to understand better .

Hence ratio :

 \sf{distance \:  : displacement}

 \sf{  = \pi r  : 2r}

 \sf{ = \pi : 2}

So final answer :

 \boxed{ \bold { \red{ \sf{ ratio =  \pi : 2}}}}

Attachments:
Answered by Anonymous
6

\blue{\underline{ \huge{ \blue{\boxed{ \mathfrak{\fcolorbox{red}{orange}{\purple{Answer}}}}}}}} \\  \\  \star \rm \:  \blue{Given} \\  \\   \leadsto \rm \: a \: particle \: moves \: on \: semicircle \: of  \\  \rm \:  radius \: r \: from \: a \: to \: b \\  \\  \star \rm \:  \blue{To \: Find} \\  \\  \leadsto \rm \: ratio \: of \: distance \: travelled \: by \:  \\  \rm \: particle \: and \: displacement \\  \\  \star \rm \:  \blue{Concept} \\  \\  \dagger \rm \:  \boxed{ \red{ \rm{Distance}}} \implies \rm \: the \: total \: length \\  \rm \: of \: path \: that \: is \: covered \: by \: particle \: \\  \rm is \: called \: as \: distance... \\   \leadsto\rm \: here \: distance =  \frac{perimeter}{2}  = \pi{r} \\  \\  \dagger \:  \boxed{ \rm{ \red{Displacement}}} \implies \rm \: the \: shortest \\ \rm \: distance \: between \: two \: points \: is \: called  \\ \rm \: as \: displacement... \\   \leadsto \rm \: here \: displacement = 2r \\  \\  \star \rm \:  \blue{Calculation} \\  \\  \leadsto \rm \:  \frac{Distance}{Displacement}  =  \frac{\pi{r}}{2r}  =  \frac{\pi}{2}  \\  \\  \dagger \:   \underline{\boxed{ \bold{ \rm{ \orange{ratio =  \pi {:2} }}}}} \:  \dagger

Attachments:
Similar questions