Math, asked by dukedom2598, 5 months ago

A passanger train takes 2 hours more than express train to travel 240 kmthe speed of express train is more than passanger tain by 10 km then find the speed of both the tra

Answers

Answered by EliteZeal
41

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • A passenger train takes 2 hours more than express train to travel 240 km

  • The speed of express train is more than passenger train by 10 km/hr

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Speed of both the trains

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

  • Let the speed of passenger train be "p"

  • Let the speed of express train be "e"

  • Let time taken by passenger train be "T1"

  • Let time time by express train be "T2"

 \:\:

We know that ,

 \:\:

 \sf T = \dfrac { D } { S} ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • S = Speed

  • D = Distance

  • T = Time taken

 \:\:

 \underline{\bold{\texttt{For passenger train :}}}

 \:\:

  • S = p

  • D = 240

  • T = T1

 \:\:

Putting the above values in ⓵

 \:\:

 \sf T = \dfrac { D } { S}

 \:\:

 \sf T1 = \dfrac { 240} { p} ⚊⚊⚊⚊ ⓶

 \:\:

 \underline{\bold{\texttt{For express train :}}}

 \:\:

  • S = e

  • D = 240

  • T = T2

 \:\:

Putting the above values in ⓵

 \:\:

 \sf T = \dfrac { D } { S}

 \:\:

 \sf T2 = \dfrac { 240} { e} ⚊⚊⚊⚊ ⓷

 \:\:

Given that , passenger train takes 2 hours more than express train to travel 240 km

 \:\:

Thus ,

 \:\:

➜ T1 = T2 + 2

 \:\:

From ⓶ & ⓷

 \:\:

 \sf \dfrac { 240} { p} = \dfrac { 240} { e} + 2 ⚊⚊⚊⚊ ⓸

 \:\:

Also given that the speed of express train is more than passenger train by 10 km/hr

 \:\:

So,

 \:\:

➜ e = p + 10 ⚊⚊⚊⚊ ⓹

 \:\:

Putting the e = p + 10 from ⓹ to ⓸

 \:\:

 \sf \dfrac { 240} { p} = \dfrac { 240} { e} + 2

 \:\:

 \sf \dfrac { 240} { p} = \dfrac { 240} {p + 10} + 2

 \:\:

 \sf \dfrac { 240 } { p } = \dfrac { 240 + 2p + 20 } { p + 10 }

 \:\:

 \sf \dfrac { 240 } { p } = \dfrac { 260 + 2p  } { p + 10 }

 \:\:

➜ 240(p + 10) = p(260 + 2p)

 \:\:

➜ 240p + 2400 = 260p + 2p²

 \:\:

➜ 2p² + 260p - 240p - 2400 = 0

 \:\:

➜ 2p² + 20p - 2400 = 0

 \:\:

Dividing the above equation by 2

 \:\:

➜ p² + 10p - 1200 = 0

 \:\:

Here we got a quadratic equation so let us solve it by splitting the middle term method

 \:\:

➜ p² + 40p - 30p - 1200 = 0

 \:\:

➜ p(p + 40) -30(p + 40) = 0

 \:\:

➜ (p + 40)(p - 30) = 0

 \:\:

  • p = -40
  • p = 30

 \:\:

As speed can't be negative hence

 \:\:

➨ p = 30 ⚊⚊⚊⚊ ⓺

 \:\:

  • Hence the speed of passenger train is 30 km/hr

 \:\:

Putting p = 30 from ⓺ to ⓹

 \:\:

➜ e = p + 10

 \:\:

➜ e = 30 + 10

 \:\:

➨ e = 40

 \:\:

  • Hence the speed of express train is 40 km/hr

 \:\:

Similar questions