Math, asked by Gyaanji, 11 months ago

A passenger train takes 3 h less for a journey of 360 km, if its speed is increased by 10 km/h from its usual speed. find it's usual speed.

Answers

Answered by Anonymous
16

 \boxed{ \bf \: Question:-}

A passenger train takes 3 hour less for a journey of 360 km, if its speed is increased by 10 km/h from its usual speed. Find its usual speed.

 \red{ \bullet} \:  \rm \: Note :  -  \: Here, \: we \: have \: to \: find \: out \: the \: usual  \\ \rm speed \: of \: the \: train, \: so \: we \: assume \: it \: as \:  \red{x} \: kmh \: and  \\ \rm then \: translate \: the \: word \: problem \: into \: symbolic \: form \\  \rm leading \: to \: a \: quadratic \: equation \: by \: using \: the \: formula :  -   \\ \\   \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{\bf \: Time =  \frac{Distance}{Speed}}

 \boxed{ \bf \: Solution:-}

 \rm \: Let \: the \: usual \: speed \: of \: the \: train \:  = x \: km/h.

 \rm \: Then, \: by \: using \: the \: formula,

 \rm \: Time =  \frac{Distance}{Speed}  ,\: \: we \: get \\

 \rm \: Time \: taken \: by \: the \: train \:  =  \frac{360}{x} \: h \:  \:  \:  \:  \:  \:  \:  \:  \:  [given, \: distance = 360 \: km] \\

 \rm \: If \: speed \: is \: increased \: by \: 10 \: km/h, \: then \: the \: new \\  \rm speed \: of \: the \: train = (x + 10) \: km/h.

 \therefore \: \:   \rm \: Time \: taken \: by \: the \: train \:  =  \bigg( \frac{360}{x + 10} \bigg) \: h \\

 \rm \: According \: to \: the \: question,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \:  \frac{360}{x} =  \frac{360}{x + 10} + 3 \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \frac{360}{x} -  \frac{360}{x + 10} = 3 \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \frac{360( x + 10 - x)}{x(x + 10)} = 3 \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \frac{360 \times 10}3 = x(x + 10) \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm  \: 1200 = x {}^{2}  + 10x

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: x {}^{2}  + 10x - 1200 = 0

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: x {}^{2}  + 40x - 30x - 1200 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [by \: factorisation]

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: x(x + 40) - 30(x + 40) = 0

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: (x + 40)(x - 30) = 0

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: x + 40 = 0

 \rm \:  \:  \:  \: or  \:  \: \:  \:  \:   \: \:  \:  \:  \:  \:  \:  \: \:  x  - 30 = 0

 \rm \: But \: speed \: cannot \: be \: negative.

 \therefore \:  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \rm \: x = 30

 \rm \: Hence, \: the \: usual \: speed \: of \: passenger \: train \: is \:  \red{30} \: km/h.


Anonymous: Awesome
Rythm14: Perfect!
Similar questions