Math, asked by gurkirat3768, 4 months ago

A path 5m wide rins along inside a rectangular field . The lengh of the rectangular field os three times the breadth of the field . If the area of the path is 500 meter square , then the length and breadth of the field.​

Answers

Answered by Anonymous
7

Question:-

A path 5m wide rins along inside a rectangular field . The lengh of the rectangular field os three times the breadth of the field . If the area of the path is 500 meter square , then the length and breadth of the field.

Answer:-

  • The length and breadth of rectangle is 45 m and 15 m

To find:-

  • Length and breadth of rectangular field

Solution:-

  • Width of the path (w) = 5m

Let,

  • Let the length of the rectangular field = ‘l’ m
  • Breadth of the rectangular field = ‘b’ m

As we know,

 \large{ \boxed{ \red{ \sf { Area  \: of \:  the  \: rectangular \:  field = (l  \times  b) m²}}}}

Also given ,

  • length = 3 x Breadth
  • L = 3b

INNER RECTANGLE,

  • Length:-

 \large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: length \: of \: inner \: rectangle =l \: –  \: 2w}

 \large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: length \: of \: inner \: rectangle  = l - 2(5)}

 \large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: length \: of \: inner \: rectangle  = 3b- 10 \: m}

  • Breadth :-

 \large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: breadth \: of \: inner \: rectangle  = b \:  –  \: 2w}

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: breadth \: of \: inner \: rectangle   = b - 2(5)}

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: breadth \: of \: inner \: rectangle   = b - 10 \: m}

  • Area of inner rectangle :-

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: area \: of \: inner \: rectangle   = (3b - 10)(b - 10)}

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: area \: of \: inner \: rectangle   =3 {b}^{2}  - 10b - 30b + 100}

Now,

  • Area of the path = Area of outer rectangle – Area of inner rectangle

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: area \: of \:path   =(l \times b) - (3 {b}^{2}  - 10b - 30b + 100)}

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: area \: of \:path   =3b \times b - (3 {b}^{2}  - 40b - 100)}

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: area \: of \:path   =3 {b}^{2}  - 3 {b}^{2}   + 40b - 100}

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \: area \: of \:path   =40b - 100}

Given,

  • Area of the path = 500 m²

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \:    40b - 100 = 500}

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \:    40b = 500 + 100 = 600}

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \:    b =  \frac{600}{40}}  \\

\large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \:    b = 15 \: m}

Now,

  • Length of the field =3b = 45 m
  • Breadth of the field = 15 m

Hence,

The length and breadth of rectangle is 45 m and 15 m

Similar questions