Math, asked by pathanianishu74, 1 day ago

a patient in a hospital is given soup daily in a cylindrical bowl of diameter 7 cm if the bowl is filled with the soup of the height 4 cm how much soup the hospital has prepared daily to serve 250 patients​

Answers

Answered by Anonymous
63

 \large{\underline{\underline{\maltese{\red{\pmb{\sf{ \; Given \; :- }}}}}}}

  • ➳ Diameter of Bowl = 7 cm
  • ➳ Height of Bowl = 4 cm

 \\ \rule{200pt}{3pt}

 \large{\underline{\underline{\maltese{\green{\pmb{\sf{ \; To \; Find \; :- }}}}}}}

  • ➳ Soup prepared to serve 250 patients = ?

 \\ \rule{200pt}{3pt}

 \large{\underline{\underline{\maltese{\pink{\pmb{\sf{ \; Solution \; :- }}}}}}}

 {\color{darkblue}{❒}} Formula Used :

 {\color{cyan}{\bigstar}} \; {\underline{\boxed{\purple{\sf{ Volume{\small_{(Cylinder)}} = \pi {r}^{2} h }}}}}

Where :

  •  \rightarrowtail  {\sf{ \pi = \dfrac{22}{7} }}
  •  \rightarrowtail r = Radius
  •  \rightarrowtail h = Height

 \\ \qquad{\rule{150pt}{1pt}}

 {\color{darkblue}{❒}} Calculating the Volume of 1 Bowl :

 \begin{gathered} \; \dashrightarrow \; \; \sf { Volume = \pi {r}^{2} h } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf{ Volume =\dfrac{22}{7} \times \bigg\lgroup { \dfrac{Diameter}{2} } \bigg\rgroup ^{2}  \times 4 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf{ Volume =\dfrac{22}{7} \times \bigg\lgroup { \dfrac{7}{2} }\bigg\rgroup ^{2}  \times 4 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf{ Volume =\dfrac{22}{7} \times \dfrac{7}{2} \times \dfrac{7}{2} \times 4 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf{ Volume =\dfrac{\cancel{22}}{7} \times \dfrac{7}{\cancel2} \times \dfrac{7}{2} \times 4 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf{ Volume =\dfrac{11}{\cancel7}  \times \cancel7 \times \dfrac{7}{2} \times 4 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf{ Volume = 11 \times \dfrac{7}{\cancel2} \times \cancel4 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf{ Volume = 11 \times 7 \times 2 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf{ Volume = 77 \times 2 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; {\qquad{\red{\sf{ Volume{\small_{(1 \; Bowl)}} = 154 \; {cm}^{3} }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

 {\color{darkblue}{❒}} Calculating the Volume of 250 Bowls :

 \begin{gathered} \; \longmapsto \; \; \sf { Volume{\small_{(250 \; Bowls)}} = Volume{\small_{(1 \; Bowl)}} \times No. \; of \; Bowls } \\ \end{gathered}

 \begin{gathered} \; \longmapsto \; \; \sf { Volume{\small_{(250 \; Bowls)}} = 154 \times 250 } \\ \end{gathered}

 \begin{gathered} \; \longmapsto \; \; {\qquad{\green{\sf{ Volume{\small_{(250 \; Bowl)}} = 38500 \; {cm}^{3} }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

 {\color{darkblue}{❒}} Calculating the Soup Prepaired :

 \begin{gathered} \; \implies \; \; \sf { Soup{\small_{(Prepaired)}} = \dfrac{Volume}{1000} } \\ \end{gathered}

 \begin{gathered} \; \implies \; \; \sf { Soup{\small_{(Prepaired)}} = \dfrac{38500}{1000} } \\ \end{gathered}

 \begin{gathered} \; \implies \; \; \sf { Soup{\small_{(Prepaired)}} = \cancel\dfrac{38500}{1000} } \\ \end{gathered}

 \begin{gathered} \; \implies \; \; {\qquad{\pink{\sf{ Soup \; Prepared = 38.5 \; Litres }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

 {\color{darkblue}{❒}} Therefore :

❛❛ Soup Prepaired for the patients is 38.5 Litres . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by Anonymous
22

Answer:

Given :

  • Dimeter of cylindrical bowl = 7 cm.
  • Height of cylindrical bowl = 4 cm.

To Find :

  • Quantity of soup to serve 250 Patients.

Using Formulas :

Let us know the required formulas before solving the question :

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \boxed{\begin{array}{l}\twoheadrightarrow\: \: \rm{Radius = \dfrac{Diameter}{2}} \\ \\ \twoheadrightarrow \rm{Volume_{(Cylinder)} =  \pi{r}^{2}h}\\ \\ \twoheadrightarrow  \rm{1 \:{cm}^{3}  =  \dfrac{1}{1000} \: litre}  \end {array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Solution

Finding the radius of bowl by substituting the values in the formula :

 \begin{gathered}\qquad{\implies{Radius = \dfrac{Diameter}{2}}} \\  \\ \qquad{\implies{Radius = \dfrac{7}{2}}} \\  \\ \qquad{\implies{Radius = \cancel{\dfrac{7}{2}}}} \\  \\ \qquad{\implies{Radius = 3.5 \: cm}}\end{gathered}

Hence, the radius of cylindrical bowl is 3.5 cm.

 \rule{190}1

Finding, the volume of cylindrical bowl by substituting the values in the formula :

\begin{gathered} \quad{\implies{Volume_{(Cylinder)} =  \pi{r}^{2}h}}\\  \\ \quad{\implies{Volume_{(Cylinder)} =  \dfrac{22}{7} \times {(3.5)}^{2} \times 4}} \\  \\\quad{\implies{Volume_{(Cylinder)} =  \dfrac{22}{7} \times 12.25\times 4}} \\  \\ \quad{\implies{Volume_{(Cylinder)} =  \dfrac{22}{\cancel{7}} \times \cancel{12.25}\times 4}}  \\  \\  \quad{\implies{Volume_{(Cylinder)} =  22 \times 1.75 \times 4}} \\  \\ \quad{\implies{Volume_{(Cylinder)} =  22 \times 7}} \\  \\ \quad{\implies{Volume_{(Cylinder)} =  154 \:  {cm}^{3}}}\end{gathered}

Hence, the volume of cylindrical bowl is 154 cm³.

 \rule{190}1

Converting the volume of cylindrical bowl 154 cm³ into litre :

\begin{gathered} \qquad{\implies{1 \:{cm}^{3}  =  \dfrac{1}{1000} \: litre}} \\  \\ \qquad{\implies{154 \:{cm}^{3}  =  \dfrac{154}{1000} \: litre}} \\  \\  \qquad{\implies{154 \:{cm}^{3}  =  0.154\: litre}} \end{gathered}

Hence, the volume of cylindrical bowl is 0.154 litre.

 \rule{190}1

Now, finding the Quantity of soup to serve 250 Patients..

\begin{gathered} \quad{\implies{1 \: bowl = 0.154\: litre}}\\\\\quad{\implies{250\: bowl = 0.154  \times 250}}\\\\\quad{\implies{250 \: bowl = \dfrac{154}{1000} \times 250}}\\\\\quad{\implies{250 \: bowl = \dfrac{154}{\cancel{1000}}  \times  \cancel{250}}}\\\\\quad{\implies{250 \: bowl = \dfrac{154}{4} \times 1}}\\\\\quad{\implies{250 \: bowl = \dfrac{154}{4}}}\\\\\quad{\implies{250\: bowl = \cancel{\dfrac{154}{4}}}}\\\\\quad{\implies{250\: bowl = 38.5 \: litre}}\end{gathered}

Hence, 38.5 litre soup required daily to serve 250 patients.

 \rule{190}1

Learn More :

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

\rule{220pt}{4pt}

Similar questions