Math, asked by anandh95, 1 year ago

A pen costs Rs.13/-. A note book costs Rs.35/-. Let m be the maximum number of items that can be brought for Rs.1000/- and n be the minimum number of items that can be brought for the same amount. Then m+n is

a)76 b)88 c)95 d)98

Answers

Answered by NidhraNair
29
Given data :-

⭕️m  =  Maximum number of items that can be bought for ₹ 1000

⭕️n   = Minimum number of items that can be bought for ₹ 1000

➖For maximum :-

13x + 35y = 1000          

➖Where;
                         
 (  x =  Total number of pens )
(y = Total number of note book ) 

➖Now by using the hit and trial method:-

x = 50 , y = 10

⇒ 13 × 50 + 35 × 10 = 1000

∴ m = 50 + 10 = 60

➖For minimum :-

x = 15, y = 23

= 13 × 15 + 35 × 23 = 1000

n = 23 + 15 = 38

m + n = 60 + 38   =  98

➖∴ the correct option is D.


\huge\bf{\boxed {\red{\mathfrak{thank \:  you :)}}}}




NidhraNair: ur name?
Answered by Anonymous
12

Maximum number of items that can be bought for Rs.1000 = m

Minimum number of items that can be bought for Rs.1000 = n

______ [ GIVEN ]

• Let (M) for pen and (N) for notebook.

________________ [ ASSUME ]

We have to find the value of m + n.

_____________________________

According to question,

=> 13M + 35N = 1000

By hit and trial method we have,

M = 50 and N = 10

(For maximum)

=> 13 × 50 + 35 × 10 = 1000

=> 50 + 10 = 60

So, we have m = 60

For minimum :-

M = 15 and N = 23

=> 13 × 15 + 35 × 23 = 1000

=> 23 + 15 = 38

=> n = 38

So,

=> m + n = 60 + 38

=> 98

_____________________________

Option d)

____________ [ ANSWER ]

_____________________________

Similar questions