Physics, asked by rithish1115, 11 months ago

A pendulum clock shows correct time at 20°C at a place where g = 9.800 m s–2. The pendulum consists of a light steel rod connected to a heavy ball. It is taken to a different place where g = 9.788 m s–1. At what temperature will the clock show correct time? Coefficient of linear expansion of steel = 12 × 10–6 °C–1.

Answers

Answered by Anonymous
0

\huge{\boxed{\mathfrak\pink{\fcolorbox{red}{purple}{Mr\:Awesome}}}}

❤.option B is correct

Answered by bhuvna789456
3

The clock show correct time  at temperatures 82℃

Explanation:

The temperature at which the pendulum shows the proper time , T_1 = 20 °C

Linear expansion coefficient for steel,

\alpha=12 \times 10^{-6} \cdot \mathrm{C}^{-1}

Let  \mathrm{T}_{2}  be the temperature the value of g is  9.788ms^{-2 } and ΔT be  Temperature change.

Thus, the pendulum time periods at different g values will be t_1 and t_2;

T_{1}=2 \pi \frac{\sqrt{l_{1}}}{g_{1}}

T_{2}=2 \pi \frac{\sqrt{l_{2}}}{g_{2}}

=2 \pi \frac{\sqrt{l_{1}(1+\Delta T)}}{g}

= 2 \pi \frac{\sqrt{l_{2}}}{g_{2}}

=2 \pi \frac{\sqrt{l_{1}(1+\Delta T)}}{g}

\frac{l_{1}}{g_{1}}=\frac{l_{1}(1+\Delta T)}{g_{2}}

\frac{1}{9.8}=\frac{\left(1+12 \times 10^{-6} \times \Delta T\right)}{9.788}

\frac{9.788}{9.8}=1+12 \times 10^{-6} \times \Delta T

\frac{9.788}{9.8}-1=12 \times 10^{-6} \times \Delta T

0.9987-1=12 \times 10^{-6} \times \Delta T

-0.00122=12 \times 10^{-6} \times \Delta T

\Delta T=\frac{12 \times 10^{-6}}{-0.00122}

T_{2}-20=-101.6

T_{2}=-101.6+20

T_{2}=-81.6 \approx 82^{\circ} \mathrm{C}

Similar questions