Physics, asked by rashmivijaykar1974, 9 months ago

A pendulum consisting of a massless
string of length 20 cm and a tiny bob
of mass 100 g is set up as a conical
pendulum. Its bob now performs 75 rpm.
Calculate kinetic energy and increase in
the gravitational potential energy of the
bob. (Use a? = 10)

Answers

Answered by manishaprajapati1891
1

Answer:

Please mark me as brainlist you will also get 3. point to set me brainlist

Answered by Yo11
0

Answer:

Data: L = 0.2 m, m = 0.1 kg, n = 7560=54rps,

Data: L = 0.2 m, m = 0.1 kg, n = 7560=54rps,g = 10 m/s2, π2 = 10,

Data: L = 0.2 m, m = 0.1 kg, n = 7560=54rps,g = 10 m/s2, π2 = 10,T = 1n=45s=0.8s

Data: L = 0.2 m, m = 0.1 kg, n = 7560=54rps,g = 10 m/s2, π2 = 10,T = 1n=45s=0.8sT = 2πL cosθg

Data: L = 0.2 m, m = 0.1 kg, n = 7560=54rps,g = 10 m/s2, π2 = 10,T = 1n=45s=0.8sT = 2πL cosθg∴ T2 = 4πL cosθg

Data: L = 0.2 m, m = 0.1 kg, n = 7560=54rps,g = 10 m/s2, π2 = 10,T = 1n=45s=0.8sT = 2πL cosθg∴ T2 = 4πL cosθg∴ h = L cos θ = gT24π2

=(10)(0.8)24(10)=0.16 m ...(1)

...(1)∴ cos θ = 0.160.2

=0.8

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°= (0.12)(10)(0.7500)

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°= (0.12)(10)(0.7500)= 0.9

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°= (0.12)(10)(0.7500)= 0.9The KE of the bob

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°= (0.12)(10)(0.7500)= 0.9The KE of the bob

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°= (0.12)(10)(0.7500)= 0.9The KE of the bob

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°= (0.12)(10)(0.7500)= 0.9The KE of the bob =12mv2=12(0.1)(0.9)

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°= (0.12)(10)(0.7500)= 0.9The KE of the bob =12mv2=12(0.1)(0.9)= 0.045 J

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°= (0.12)(10)(0.7500)= 0.9The KE of the bob =12mv2=12(0.1)(0.9)= 0.045 JThe increase in gravitational PE,

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°= (0.12)(10)(0.7500)= 0.9The KE of the bob =12mv2=12(0.1)(0.9)= 0.045 JThe increase in gravitational PE,Δ PE = mg (L - h)

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°= (0.12)(10)(0.7500)= 0.9The KE of the bob =12mv2=12(0.1)(0.9)= 0.045 JThe increase in gravitational PE,Δ PE = mg (L - h)= (0.1)(10)(0.2 - 0.16)

=0.8∴ θ = cos-1 0.8 = 36.87° = 36°5'v2 = rg tan θ = (L sin θ)(g) tan 36.87°= (0.12)(10)(0.7500)= 0.9The KE of the bob =12mv2=12(0.1)(0.9)= 0.045 JThe increase in gravitational PE,Δ PE = mg (L - h)= (0.1)(10)(0.2 - 0.16)= 0.04 J

Similar questions