Physics, asked by sachin754353, 6 months ago


A perfect Carnot engine utilizes an ideal gas. The source temperature is 500 and sink temperature is 375K. If the engine takes 600K cal per cycle from the source, compute :
a) the efficiency of the engine
b) work done per cycle
c) heat rejected to the sink per cycle​

Answers

Answered by BrainlyTwinklingstar
31

\Huge {\orange {\bf {\underline {\underline {ÀnSwer}}}:-}}

a) the efficiency of the engine is 25%

b) work done per cycle is 6.3 × 10⁵J

c) heat rejected to the sink per cycle is 450kcal

━━━━━━━━━━━━━━━

Explaination :-

Gíven :-

  • \sf T_1= 500k.
  • \sf T_2= 375k.
  • Heat absiorbed per cycle, \sf   \varrho_{1} = 600K cal.

To fínd :-

a) the efficiency of the engine

b) work done per cycle

c) heat rejected to the sink per cycle

Solutíon :-

a) From the relation,

 \longrightarrow  \sf \eta  = 1 -  \frac{ T_{1} }{T_{2}}  \\  \\  \longrightarrow  \sf \eta  =  \frac{ T_{1}  - T_{2}}{T_{2}}    \\  \\  \longrightarrow  \sf \eta   =  \frac{500 - 375}{500}  =  \frac{125}{500}  \\  \\  \longrightarrow  \sf \eta   = 0.25 \\  \\  \longrightarrow  \sf \eta   \% = 0.25 \times 100 = 25\% \\

\therefore the efficiency of the engine is 25% .

b) suppose W = work done per cycle

using the relation,

.i.e.,

 \longrightarrow \sf \eta =  \frac{W}{ \varrho _{1} }  \\  \\  \longrightarrow \sf W =  \eta \varrho _{1} \\  \\  \longrightarrow \sf \: W = 0.25 \times 600 \: kcal \\  \\  \longrightarrow \sf \: W = 150 \: kcal \\  \\  \longrightarrow \sf W = 150 \times  {10}^{3}  \times 4.2j \\  \\  \longrightarrow \sf W = 6.3 \times  {10}^{5} j

\therefore Work done per cycle is 6.3 × 10⁵J.

c) Suppose \sf  \varrho_{2} = heat rejected to the sink

therefore from the relation

.i.e.,

 \longrightarrow \sf W =   \varrho_{1}  - \varrho_{2} \\  \\  \longrightarrow \sf   \varrho_{2}   =  \varrho_{1}  - W \\ \\  \longrightarrow \sf  \varrho_{2} = 600 - 150 \\ \\ \longrightarrow \sf  \varrho_{2} =450kcal

thus, heat rejected to the sink per cycle is 450 Kcal

Similar questions