Physics, asked by Anonymous, 8 months ago

A perfectly elastic particle is projected with a velocity v on a vertical plane through the line of greatest slope of an inclined plane of elevation α.If after striking the plane, the particle rebounds vertically show that it will return to the point of projection at the end of time equal to?

Answers

Answered by EnchantedGirl
35

\huge\underline{{\green{Aɴsᴡᴇʀ:-}}}

\\

Let angle of projection of the particle with the plane is \sf  \theta .

\\

And it's displacement along y-axis becomes zero in time t.

\\

\mapsto \sf y = u_y t+1/2 a_y t^2 \\\\\\ \implies \sf t = 2v sin\theta /gcos\alpha....(1)

 \\  \\  \\  \mapsto \: \sf \: vsin \alpha  = vcos \theta - gsin \theta \: t...(2) \\  \\  \\  \implies \sf \: vcos \alpha  = vsin \theta  - gcos \theta \: t...(3) \\  \\  \\

From eqn 2 :

 \\  \\  \\  \implies \sf \: vsin \alpha  = vcos \theta \:  - gsin \alpha  \times  \frac{2vsin \theta}{gcos \alpha}  \\  \\  \\  \implies \sf \: v =  \frac{vcos \theta}{sin \alpha }  -  \frac{2vsin \theta}{cos \alpha } ....(4) \\  \\  \\

Now, substituting value of 't' in eqn (1)&(2) :

 \\  \\  \\  \implies \sf \: vcos \alpha  = vsin \theta \:  - gcos \alpha ( \frac{2vsin \theta}{gcos \alpha } ) \\  \\  \\

Now ,

 \\  \\  \\  \implies \sf \: tan \alpha =  \frac{cos \theta.2sin \theta.tan \alpha }{sin \theta}  \\  \\  \\  \implies \sf \: cot \theta - 2tan \alpha  \\  \\  \\  \therefore \sf cos \theta =  \frac{3tan \alpha }{ \sqrt{1 + 9 {tan}^{2}  \alpha} }  \\  \\  \\

Total time taken by particle is equal to the sum of time taken from O to P and P to Q and from Q to P to Q.

Thus ,

\\

» total time = 2t + 2t' = 2(t+t')

\\

» We have t = v/g

 \\  \\  \\  \implies \sf \: total \: time  = 2( \frac{2vsin \theta}{gcos \alpha }  +  \frac{v}{g} ) \\  \\  \\  \implies \sf \: 2( \frac{2vsin \theta}{gos \alpha }  +  \frac{1}{g} ( \frac{vcos \theta}{sin \alpha }  -  \frac{2vsin \theta}{cos \alpha } ) \\  \\  \\  \implies  \sf \:  \frac{2vcos \theta}{gsin \alpha }  =  \frac{2v( \frac{3tan \alpha }{ \sqrt{1 + 9 {tan}^{2}  \alpha} } )}{gsin \alpha }  \\  \\  \\

After solving we get :

\\

 \bigstar \orange {\boxed{ \sf \: total \: time =  \frac{6v}{g \sqrt{1 + 8 {sin}^{2}  \alpha } } }}

\\

_______________________________________________

Attachments:
Answered by knikhila007
1

Explanation:

yeahh idk but the correct answer is correct "deleted account".

Similar questions