Math, asked by shreyaSingh2022, 3 months ago

A person bought a watch for Rs. 500 and sold for Rs. 600. Another person bought another watch for Rs. 400 and sold for Rs. 500
8)5
9(
l

Answers

Answered by Salmonpanna2022
2

Step-by-step explanation:

Given that:

⬤A person bought a watch for Rs. 500 and sold for Rs. 600.

⬤Another person bought another watch for Rs. 400 and sold for Rs. 500

To find:

⬤The profit ℅ in both cases.

Solution:

Profit in first case = ₹600 - ₹500 = 100

⬤Profit in second case = ₹500 - ₹400 = 100

Profit is the same in both cases. But the first case the has to spend 500 and second case only 400 to make the same profit.

So we calculate percentage of profit in each case to campare.

The first person spends 500 to earn a profit of 100.

 \tt \</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{₹  \: 1 \:  to \:  earn \:  profit  \: of \:  ₹ \frac{100}{500} } \\  \\

 \tt \</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{₹  \: 100 \:  to \:  earn \:  profit \:  of  \: ₹ \:  \frac{100}{500}  \times 100} \\  \\

 \:  \:  \:  \:  \:  \:  \:  \tt</strong><strong>\</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{ = ₹20} \\  \\

 \:  \:  \:  \:  \:  \:  \tt \</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{ profit =20 \%} \\  \\

The second person spends 400 to earn a profit of 100

 \tt \</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{₹  \: 1  \: to \:  earn \:  profit  \: of  \: ₹ \:  \frac{100}{400}} \\  \\

 \tt \</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{₹  \: 100  \: to  \: earn \:  profit  \: of  \: ₹ \:  \frac{100}{400}  \times 100} \\  \\

  \:  \:  \:  \:  \:  \:  \:  \tt \</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{=  ₹   25} \\  \\

 \:  \:  \:  \:  \: \tt \</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{profit  = 25\%} \\  \\

Thus we can say that the profit percentages are different.

formula

$\mathrm{\fbox{${\begin{array}{l}{\Pr{ofit}\hspace{0.33em}{percentage}{=}\frac{\Pr}{{Cost}\hspace{0.33em}{price}}\times{100}{\%}}\\{{Loss}\hspace{0.33em}{percentage}{=}\frac{Loss}{{Cost}\hspace{0.33em}{price}}\times{100}{\%}}\end{array}}$}}$

Note: Profit or loss percentage is always calculated on every 100 of the cost price.

Similar questions