Physics, asked by anjurnair1127, 10 months ago

A person draw a water 5m deep well through bucket of 2kg of capacity 8lit by rope of mass 1kg .total work done by person

Answers

Answered by shadowsabers03
15

Here,

  • Depth of well, \sf{h=5m}

  • Mass of bucket, \sf{m_b=2\ kg}

  • Capacity of bucket, \sf{V=8\ L}

  • Density of water, \sf{\rho=1\ kg\,L^{-1}}

  • Mass of rope, \sf{m_r=1\ kg}

Let \sf{g=10\ m\,s^{-2}.}

Work done to pull up a bucket of mass \sf{m_b} and capacity \sf{V} through a distance \sf{h} is,

\longrightarrow\sf{W_1=(m_b+m_w)\,gh}

But mass of water, \sf{m_w=\rho V=V.} Then,

\longrightarrow\sf{W_1=(m_b+V)\,gh}

\longrightarrow\sf{W_1=(2+8)\times10\times5}

\longrightarrow\sf{W_1=500\ J}

The rope tied to the bucket has the same length as the depth of the well.

So work done to pull up the rope of mass \sf{m_r} hanging vertically downwards is,

\longrightarrow\sf{W_2=\dfrac{m_rgh}{2}}

\longrightarrow\sf{W_2=\dfrac{1\times10\times5}{2}}

\longrightarrow\sf{W_2=25\ J}

Hence total work done is,

\longrightarrow\sf{W=W_1+W_2}

\longrightarrow\underline{\underline{\sf{W=525\ J}}}

Similar questions