Physics, asked by lsbhangu6, 10 months ago


A person observes a bird on a tree 39.6 m at a distance of 59.2m with what velocity the
person should throw an arrow at an angle of 45 degree. So that it may hit the bird? ​

Answers

Answered by nirman95
2

Given:

A person observes a bird on a tree 39.6 m at a distance of 59.2m

To find:

Velocity the person should throw an arrow at an angle of 45 degree to hit the target.

Calculation:

Let Velocity be v ;

Along X axis:

x = v \cos( \theta) t

 =  > 59.2 = v \cos( {45}^{ \circ} ) t

Along Y axis:

y = v \sin( \theta) t -  \dfrac{1}{2} g {t}^{2}

 =  > y = v \sin(  {45}^{ \circ} ) t -  \dfrac{1}{2} g {t}^{2}

Putting value of t ;

 =  > 39.6= v \sin(  {45}^{ \circ} )  \{\dfrac{59.2}{v \cos( {45}^{ \circ} )   } \}  -  \dfrac{1}{2} g {t}^{2}

 =  > 39.6= 59.2\tan(  {45}^{ \circ})  -  \dfrac{1}{2} g { \{ \dfrac{59.2}{v \cos( {45}^{ \circ} ) } \} }^{2}

 =  > 39.6= 59.2 -  \dfrac{1}{2} g { \{ \dfrac{59.2}{v \cos( {45}^{ \circ} ) } \} }^{2}

 =  >  \dfrac{1}{2} g { \{ \dfrac{59.2}{v \cos( {45}^{ \circ} ) } \} }^{2}  = 19.6

 =  >  \dfrac{1}{2} (9.8) { \{ \dfrac{59.2}{v \cos( {45}^{ \circ} ) } \} }^{2}  = 19.6

 =  >  \dfrac{1}{2}  { \{ \dfrac{59.2}{v \cos( {45}^{ \circ} ) } \} }^{2}  = 2

 =  >   { \{ \dfrac{59.2}{v \cos( {45}^{ \circ} ) } \} }^{2}  = 4

 =  >    \{ \dfrac{59.2}{v \cos( {45}^{ \circ} ) } \}  = 2

 =  >   v =  \{ \dfrac{59.2}{2 \cos( {45}^{ \circ} ) } \}

 =  >   v =  \dfrac{59.2}{2 \times  \frac{1}{ \sqrt{2} }  }

 =  >   v =  \dfrac{59.2}{ \sqrt{2}  }

 =  > v = 41.86 \: m {s}^{ - 1}

So, final answer is:

 \boxed{ \sf{v = 41.86 \: m {s}^{ - 1} }}

Similar questions