Math, asked by dakshayaniraju1985, 10 months ago

a person standing on the bank of a
river observes that the angle of elevation
of the top of a tree standing on the
opposite bank is 60° .When he moves 40m
away from the bank he finds the angle
of elevation to be 30°. Find the
height of the tree and the width of
the river.​

Answers

Answered by Anonymous
55

\bold\green{Height\:of\:tree}= 34.64 metres.

\bold\green{Width\:of\:Canal}= 20 meters.

EXPLANATION:

Let,

  • CD be the tree of height h meter.
  • B be the position of a man standing on the opposite bank of the river.

After moving 40 M away from point B.

so, let new position of man be A

hence, AB= 40 meter.

  • The angles of elevation of the top of the tree from point A and B are 30° and 60° respectively. i.e,, ∠CAD = 30° and ∠CBD = 60°
  • Let BC = x meter.

\rule{300}{2}

In right triangle BCD , we have

 \tan60=  \frac{CD}{BC}  \\ ⇛ \sqrt{3}  =  \frac{h}{x}  \\ ⇛x =  \frac{h}{ \sqrt{3} } ..............(i)

In right triangle ACD, we have

 \tan30 =  \frac{CD}{AC} \\ ⇛ \frac{1}{ \sqrt{3} }  =  \frac{h}{x + 40} \\ ⇛x + 40 =  \sqrt{3} h \\ x =  \sqrt{3} h - 40...........(ii)

Comparing (¡) and (ii), we get

 \frac{h}{ \sqrt{3} }  =  \sqrt{3} h - 40 \\ h = 3h - 40 \sqrt{3}  \\  - 2h =  - 40 \sqrt{3}  \\ h = 20 \sqrt{3}  \\ ⇛20 \times 1.732 \\ ⇛34.64 \: meter \\

hence, the height of the tree is 36.64 metres.

Now substituting the value of h in (i), we get

x =  \frac{h}{ \sqrt{3} }  \\ x =  \frac{20 \sqrt{3} }{ \sqrt{3} }  \\ ⇛x = 20 \: meter.

hence, width of River is 20 meters.

\rule{300}{2}

Attachments:

BrainlyConqueror0901: well done
Rythm14: grrreat! xD
StarrySoul: Awesomee!♥️
Answered by BrainlyConqueror0901
32

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height\:of\:tree=20\sqrt{3}\:m}}}

\green{\tt{\therefore{Width\:of\:river=20\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given: }} \\  \tt:  \implies length \: DC = 40 \: m \\  \\  \tt: \implies First \: angle \: of \: elevation = 60 \degree \\  \\ \tt: \implies Second\: angle \: of \: elevation = 30 \degree \\  \\ \red{\underline \bold{To \: Find: }} \\  \tt:  \implies Height \: of \: tree = ? \\  \\ \tt:  \implies Width \: of \: river =?

• According to given question :

 \bold{In \:right \: angled \:   \triangle \: ABD} \\  \tt:  \implies tan \: \theta =  \frac{p}{b}  \\  \\  \tt:  \implies tan \:30 \degree =  \frac{AB}{BD}  \\  \\ \tt:  \implies  \frac{1}{ \sqrt{3} }  =  \frac{AB}{40 + x}  \\  \\ \tt:  \implies 40 + x = AB \sqrt{3}  \\  \\ \tt:  \implies x = AB \sqrt{3}  - 40 -  -  -  -  - (1) \\  \\  \bold{In \: right \: angled \:   \triangle \: ABC} \\ \tt:  \implies tan \: \theta =  \frac{p}{b}  \\  \\ \tt:  \implies tan \: 60 \degree =  \frac{AB}{BC}  \\  \\ \tt:  \implies  \sqrt{3}  =  \frac{AB}{x}  \\  \\ \tt:  \implies x =  \frac{AB}{ \sqrt{3} }  -  -  -  -  - (2)

\text{From \: (1) \: and \: (2)} \\  \tt:  \implies  \frac{AB}{ \sqrt{3} }  = AB \sqrt{3}  - 40 \\  \\ \tt:  \implies AB= 3AB - 40 \sqrt{3}  \\  \\ \tt:  \implies 40 \sqrt{3}  = 2AB \\  \\ \tt:  \implies AB =  \frac{40 \sqrt{3} }{2}  \\  \\  \green{\tt:  \implies AB = 20 \sqrt{3} \: m } \\  \\  \text{Putting \: value \: of \: ab \: in \: (2)} \\ \tt:  \implies x =  \frac{20 \sqrt{3} }{ \sqrt{3} }  \\  \\  \green{\tt:  \implies x = 20 \: m} \\  \\    \green{\tt\therefore Height \: of \: tree \: is \: 20 \sqrt{3 }  \: m} \\  \\   \green{\tt\therefore Width \: of \: river \: is \: 20  \: m}

Attachments:

StarrySoul: Perfect Piyush!♥️
BrainlyConqueror0901: thnx adiba !
Similar questions