Physics, asked by sushanthreddy4260, 9 months ago

A person suffering from myopia was advised to wear corrective lens of power -2.5 D. At what distance should a student place an object from this lens so that it forms an image at a distance of 10 cm from the lens

Answers

Answered by Anonymous
1

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

Given :

  • Power (P) = - 2.5 D
  • Image Distance (v) = 10 cm

_____________________

To Find :

  • Concave lens
  • Object Distance (u)

_____________________

Solution :

We have formula for Focal length is :

\huge{\boxed{\boxed{\rm{f \: = \: \dfrac{1}{P}}}}} \\ \\ \implies {\sf{f \: = \: \dfrac{1}{-2.5}}} \\ \\ \implies {\sf{f \: = \: - \: 0.4 \: m}} \\ \\ \implies {\sf{f \: = \: - \: 40 \: cm}} \\ \\ \leadsto {\boxed{\tt{Focal \: length \: = \: - \: 40 \: cm}}}

_________________________________

Now, use lens formula :

\huge{\boxed{\boxed{\rm{\dfrac{1}{f} \: = \: \dfrac{1}{v} \: + \: \dfrac{1}{u}}}}} \\ \\ \implies {\sf{\dfrac{1}{u} \: = \: \dfrac{1}{f} \: - \: \dfrac{1}{v}}} \\ \\ \implies {\sf{\dfrac{1}{u} \: = \: \dfrac{-1}{40} \: - \: \dfrac{1}{10}}} \\ \\ \implies {\sf{\dfrac{1}{u} \: = \: \dfrac{-1 \: - \: 4}{40}}} \\ \\ \implies {\sf{\dfrac{1}{u} \: = \: \dfrac{-5}{40}}} \\ \\ \implies {\sf{\dfrac{1}{u} \: = \: \dfrac{1}{-8}}} \\ \\ \implies {\sf{u \: = \: - \: 8 \: cm}} \\ \\ \leadsto{\boxed{\tt{Object \: distance \: = \: -8 \: cm}}}

Answered by Anonymous
3

 { \underline{\boxed{ \sf{ \huge{ \bold{ \orange{Answer}}}}}}} \\  \\  \star \sf \:  \bold{GIVEN :} \\  \\  \longmapsto \sf \: power \: of \: lens \: (P) =  - 2.5 \: D \\   \\  \longmapsto \sf \: position \: of \: image \: (v) = 10 \: cm \\  \\  \star \sf \:  \bold{TO \: FIND :} \\  \\  \longmapsto \sf \: position \: of \: object \: (u) \\  \\  \star \sf \:  \bold{FORMULA :} \\  \\  \longmapsto \:  \sf \: First \: of \: all \: we \: have \: to \: find \: focal \: length \\  \sf \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  to  \:  calculate  \: position \: of \: object \\  \\   \longmapsto \: \sf relation \: between \: power \: of \: lens \: and \: focal \: length \\  \\  \leadsto \:   \underline{\boxed{ \sf{ \red{ \bold{f =  \frac{1}{P} }}}}} \\  \\  \longmapsto \sf \: lens \: formula \\  \\  \leadsto \sf \:   \underline{\boxed{ \bold{ \red{ \frac{1}{u}  +  \frac{1}{v}  =  \frac{1}{f} }}}} \\  \\  \star \sf \:  \bold{CALCULATION :} \\  \\  \longmapsto \sf \: f =  \frac{1}{P} =  \frac{1}{ - 2.5} =  - 40 \: cm   \\   \\   \longmapsto   \sf \:  \frac{1}{u}  =  \frac{1}{f}  -  \frac{1}{v}  \\  \\  \longmapsto \sf \:  \frac{1}{u}  =  -  \frac {1}{40}  -  \frac{1}{10}  =  -  \frac{1}{8}  \\  \\  \leadsto \sf \:   \underline{\boxed{ \bold{ \blue{u =  - 8 \: cm}}}}

Similar questions