Physics, asked by mineshsinha589, 2 months ago

a person travels along a straight road for first t/3 time with speed v1 and next 2t/3 time with speed v2 what is the average speed

Answers

Answered by Yuseong
4

Answer:

 \longmapsto \rm { \dfrac{v_1  + v_2 2}{3}  }\\

Explanation:

As per the provided information in the given question, we have :

  • A person travels along a straight road for first \rm \dfrac{t}{3} time with speed  \rm v_1 .
  • And, next \rm \dfrac{2t}{3} time with speed of  \rm v_2 .

We are asked to calculate the average speed.

In order to calculate the average speed,we'll be using the formula of average speed.

 \longmapsto \boxed{ \bf {Speed_{(avg)} = \dfrac{Total\; distance}{Total \; time}}}\\

We've to calculate the total distance and total time first.

Calculating total distance :

First case ::

  • Speed =  \rm v_1
  • Time = \rm \dfrac{t}{3}

 \longmapsto \rm { Distance = Speed \times Time }\\

 \longmapsto \rm { s_1 = v_1 \times  \dfrac{t}{3} }\\

 \longmapsto \boxed{\rm { s_1 = \dfrac{v_1 t}{3} }}\\

Second case :

  • Speed =  \rm v_2
  • Time = \rm \dfrac{2t}{3}

 \longmapsto \rm { Distance = Speed \times Time }\\

 \longmapsto \rm { s_2 = v_2 \times  \dfrac{2t}{3} }\\

 \longmapsto \boxed{\rm { s_2 = \dfrac{v_22t}{3} }}\\

Total distance ::

 \longmapsto \rm { Distance_{(Total)} = s_1 + s_2 }\\

 \longmapsto \rm { Distance_{(Total)} =\dfrac{v_1 t}{3} + \dfrac{v_22t}{3} }\\

 \longmapsto \rm { Distance_{(Total)} =\dfrac{v_1 t + v_2 2t}{3} }\\

 \longmapsto \boxed{\bf { Distance_{(Total)} =\dfrac{t(v_1  + v_2 2)}{3} }}\\

__________________________

Finding total time :

 \longmapsto \rm { Time_{(Total)} = Time_{(1st \; case)} + Time_{(Second \; case)} }\\

 \longmapsto \rm { Time_{(Total)} =\dfrac{t}{3} + \dfrac{2t}{3}   }\\

 \longmapsto \rm { Time_{(Total)} =\dfrac{t + 2t}{3} }\\

 \longmapsto \rm { Time_{(Total)} =\dfrac{3t}{3} }\\

 \longmapsto \boxed{\bf { Time_{(Total)} = t }}\\

__________________________

Calculating average speed :

 \longmapsto \rm {Speed_{(avg)} = \dfrac{Total\; distance}{Total \; time} }\\

 \longmapsto \rm {Speed_{(avg)} = \dfrac{v_1 t + v_2 2t}{3} \div t }\\

 \longmapsto \rm {Speed_{(avg)} = \dfrac{\not{t}(v_1 t + v_2 2)}{3} \times \dfrac{1}{\not{t}} }\\

 \longmapsto \boxed{\bf {Speed_{(avg)} = \dfrac{v_1  + v_2 2}{3}  }}\\

We got the required answer!!

Similar questions