Math, asked by CRM7075134077, 10 months ago

A person wants a real image of his own, 3 times enlarged. Where should he stand
in front of a concave mirror of radius of curvature 30cm?

Answers

Answered by Rppvian2019
3

Answer:

Focal length of concave mirror        f = \dfrac{-R}{2} = \dfrac{-30}{2} =-15f=2−R=2−30=−15 cm

Focal length of concave mirror        f = \dfrac{-R}{2} = \dfrac{-30}{2} =-15f=2−R=2−30=−15 cmLet the person stands at a distance xx infront of mirror  i.e.     u = -xu=−x

Focal length of concave mirror        f = \dfrac{-R}{2} = \dfrac{-30}{2} =-15f=2−R=2−30=−15 cmLet the person stands at a distance xx infront of mirror  i.e.     u = -xu=−xMagnification of image      m = 3m=3

Focal length of concave mirror        f = \dfrac{-R}{2} = \dfrac{-30}{2} =-15f=2−R=2−30=−15 cmLet the person stands at a distance xx infront of mirror  i.e.     u = -xu=−xMagnification of image      m = 3m=3\therefore∴   m = \dfrac{-v}{u}m=u−v

Focal length of concave mirror        f = \dfrac{-R}{2} = \dfrac{-30}{2} =-15f=2−R=2−30=−15 cmLet the person stands at a distance xx infront of mirror  i.e.     u = -xu=−xMagnification of image      m = 3m=3\therefore∴   m = \dfrac{-v}{u}m=u−vOr    3 = \dfrac{-v}{-x}3=−x−v                  \implies v  =3x⟹v =3x

Focal length of concave mirror        f = \dfrac{-R}{2} = \dfrac{-30}{2} =-15f=2−R=2−30=−15 cmLet the person stands at a distance xx infront of mirror  i.e.     u = -xu=−xMagnification of image      m = 3m=3\therefore∴   m = \dfrac{-v}{u}m=u−vOr    3 = \dfrac{-v}{-x}3=−x−v                  \implies v  =3x⟹v =3xUsing mirror formula :      \dfrac{1}{v}+\dfrac{1}{u} = \dfrac{1}{f}v1+u1=f1

Focal length of concave mirror        f = \dfrac{-R}{2} = \dfrac{-30}{2} =-15f=2−R=2−30=−15 cmLet the person stands at a distance xx infront of mirror  i.e.     u = -xu=−xMagnification of image      m = 3m=3\therefore∴   m = \dfrac{-v}{u}m=u−vOr    3 = \dfrac{-v}{-x}3=−x−v                  \implies v  =3x⟹v =3xUsing mirror formula :      \dfrac{1}{v}+\dfrac{1}{u} = \dfrac{1}{f}v1+u1=f1\therefore∴     \dfrac{1}{3x}+\dfrac{1}{-x} = \dfrac{1}{-15}3x1+−x1=−151               \implies x = 10⟹x=10 cm

Focal length of concave mirror        f = \dfrac{-R}{2} = \dfrac{-30}{2} =-15f=2−R=2−30=−15 cmLet the person stands at a distance xx infront of mirror  i.e.     u = -xu=−xMagnification of image      m = 3m=3\therefore∴   m = \dfrac{-v}{u}m=u−vOr    3 = \dfrac{-v}{-x}3=−x−v                  \implies v  =3x⟹v =3xUsing mirror formula :      \dfrac{1}{v}+\dfrac{1}{u} = \dfrac{1}{f}v1+u1=f1\therefore∴     \dfrac{1}{3x}+\dfrac{1}{-x} = \dfrac{1}{-15}3x1+−x1=−151               \implies x = 10⟹x=10 cmThus the person should stand at a distance of 1010 cm infront of the mirror.

Similar questions