Math, asked by Anonymous, 10 months ago

A person who is sitting on the ship of height 5m is observing the top of a submarine at 60° and bottom of the submarine at 30° . Find the distance between submarine and ship. Also find the height of the submarine and distance between top of submarine and the observer.

Please answer this question ☺️​

Answers

Answered by Anonymous
9

\large{\underline{\bf{\pink{Answer:-}}}}

✰ The height of the submarine = 5√3m

\large{\underline{\bf{\blue{Explanation:-}}}}

\large{\underline{\bf{\green{Given:-}}}}

✰ ship is at the height of 5m above water.

✰ angle of elevation to the top of the submarine = 60°

✰angle of depression to the bottom of submarine = 30°

\large{\underline{\bf{\green{To\:Find:-}}}}

✰ we need to find the height of the submarine and the distance between the ship and submarine.

\huge{\underline{\bf{\red{Solution:-}}}}

Let AB be the distance of ship from the water.

CD be the submarine.

Let man be at B point.

Then AB =5m

Let BE ⊥ CD and AC ⊥ CD

then,

\angle\:EBD=60\degree

and \angle\:EBC=30\degree

\angle\:ACB=\angle\:EBC=30\degree[Alternate\: angles

Let CD =h meters .

Then, CE = AB = 5m

and ED = (h - 5)m

In right angled triangle CAB:-

\frac{AC}{AB}=cot30\degree

:\implies\purple{\:cot30\degree=\sqrt{3}}

Then,

:\implies\:\frac{AC}{5}=\sqrt{3}

:\implies\bf{\red{\:AC=5\sqrt{3}m}}

So, BE=AC =5√3m

In right angledBED:-

\frac{DE}{BE}=tan60\degree

:\implies\:\purple{tan60\degree=\sqrt{3}}

Then,

:\implies\:\frac{h-5}{5\sqrt{3}}=\sqrt{3}\:\:\:\:\:\:[using\:(i)]

:\implies\:h-5=5\times\:3

:\implies\:h-5=15

:\implies\:h=15+5

:\implies\bf{\red{\:h=20m}}

hence,

The height of submarine = 20m

and the distance between submarine and ship= 5√3

━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Answered by Anonymous
4

\bold\red{\underline{\underline{Answer:}}}

\bold{Distance \ between \ ship \ and }

\bold{submarine \ is \ 5\sqrt3 \ m \ and }

\bold{height \ of \ submarine \ is \ 20 \ m}

\bold\orange{Given:}

\bold{=>Ship \ is \ at \ height \ of \ 5 \ m}

\bold{=>Angle \ of \ elevation \ is \ of \ 60°}

\bold{=>Angle \ of \ depression \ is \ of \ 30°}

\bold\pink{To \ find:}

\bold{=>Distance \ between \ ship \ and \ submarine}

\bold{=>Height \ of \ submarine}

\bold\green{\underline{\underline{Solution}}}

\bold{Let \ AB \ represent \ the \ ship \ and \ CE}

\bold{represent \ the \ submarine.}

___________________________________

\bold{Angle \ of \ elevation=60°}

\bold{Therefore, \ Angle(EBD)=60°}

\bold{Angle \ of \ depression=30°}

\bold{Therefore, \ Angle(DBC)=30°}

____________________________________

\bold{Angle(BCA)=Angle(DBC)... Alternate \ angles}

\bold{Therefore, \ Angle(DCB)=30°}

\bold{In \ TriangleABC, \ Angle(BAC)=90°}

\bold{Angle(ABC)=60°... remaining \ angle}

\bold{BA=5 \ m...given}

\bold{tan30°=\frac{BA}{CA}}

\bold{But,tan30°=\frac{1}{\sqrt3}}

\bold{\frac{BA}{CA}=\frac{1}{\sqrt3}}

\bold{\frac{5}{CA}=\frac{1}{\sqrt3}}

\bold{CA=5\sqrt3}

_____________________________________

\bold{In \ quadrilateral (ABCD),}

\bold{Angle(ABC)=90°}

\bold{Angle(DCA)=90°}

\bold{Angle(ABD)=Angle(ABC)+Angle(CBD)}

\bold{Angle(ABD)=60°+30°=90°}

\bold{Angle (DCA)=90°... remaining \ angle}

\bold{Therefore, \ quadrilateral (ABCD) \ is \ a \ rectangle}

\bold{By \ property \ of \ rectangle,}

\bold{AB=CD=5 \ m}

\bold{AC=BD=5\sqrt3 \ m}

\bold{Therefore, \ distance \ between \ ship \ and }

\bold{submarine \ is \ 5\sqrt3 \ m}

______________________________________

\bold{In \ TriangeEBD,}

\bold{Angle (EBD)=60°...given}

\bold{Angle(EDB)=90°...linear \ angle \ axiom}

\bold{BD=5\sqrt3 \ m}

\bold{tan60°=\frac{ED}{BD}}

\bold{But,tan60°=\sqrt3}

\bold{Therefore,\frac{ED}{BD}=\sqrt3}

\bold{\frac{ED}{5\sqrt3}=\sqrt3}

\bold{ED=15 \ m}

\bold{Height \ of \ submarine=ED+DC}

\bold{Height \ of \ submarine=15+5}

\bold{Height \ of \ submarine=20 \ m}

\bold{Therefore,}

\bold\purple{Distance \ between \ ship \ and }

\bold\purple{submarine \ is \ 5\sqrt3 \ m \ and }

\bold\purple{height \ of \ submarine \ is \ 20 \ m}

Attachments:
Similar questions