Math, asked by ishvi123, 3 months ago

a petrol tank is in the from of cylinder whous radius is 1.5cm and length is 7m find the quantity of petrol in litters that can be stored in the tank​

Answers

Answered by suraj5070
157

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt A\: petrol\: tank \:is\: in\: the\: from\: of\: cylinder\: whose\: radius\\\tt is \:1.5\:cm\: and\: length\: is\: 7\:m\: find\: the \:quantity\: of\\\tt petrol\: in \:litters\: that \:can \:be \:stored\: in\: the\: tank

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \bf Radius \:of \:the \:cylinder =1.5\:cm
  •  \bf Height \:of \:the \:cylinder =7\:m

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \bf The\: quantity\: of\: petrol\: that\: can\: be\: stored\: in\:the\: tank

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\pink {\underline {\bf {\pmb {Converting \:centi-metres(cm)\:into\:meter(m)}}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {100\:cm=1\:m}}}}}}}

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf\implies m=\dfrac{1.5}{100}

 \implies {\blue {\boxed {\boxed {\purple {\sf {m=0.015}}}}}}

—————————————————————

 {\pink {\underline {\bf {\pmb {Volume \:of \:the \:tank}}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {V_{(Cylinder)}=\pi{r}^{2}h}}}}}}}

  •  \sf V=volume \:of \:the \:cylinder
  •  \sf r=radius\:of \:the \:cylinder
  •  \sf h=height\:of \:the \:cylinder

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies V=\dfrac{22}{7}\times {\Big(0.015\Big)}^{2}\times 7

 \bf \implies V=\dfrac{22}{7}\times 0.000225 \times 7

 \bf \implies V=\dfrac{22}{\cancel{7}}\times 0.000225\times \cancel{7}

 \bf \implies V=22\times 0.000225

 \implies {\blue {\boxed {\boxed {\purple {\sf {V=0.00495\:{cm}^{3}}}}}}}

—————————————————————————————

 {\pink {\underline {\bf {\pmb {Quantity \:of \:the \:petrol\:that\:can\:be\:stored \:in\:tank}}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {1\:{cm}^{3}=1000\:l}}}}}}}

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf\implies l=0.00495\times 1000

 \implies {\blue {\boxed {\boxed {\purple {\mathfrak {l=4.95}}}}}}

 {\underbrace {\red {\overline {\red {\underline {\red {\sf {\pmb {{\therefore}\:\: 4.95\:litres \:of\:petrol\:can\:be\:stored \:in\:that\:tank}}}}}}}}}

____________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf Curved \:surface \:area \:of \:the \:cylinder =2\pi rh

 \sf Total\:surface \:area \:of \:the \:cylinder =2\pi r(r+h)

 \sf Volume \:of \:the \:cylinder =\pi{r}^{2}h


ItzArchimedes: Nice !
Similar questions
Math, 3 months ago