Physics, asked by chakraborttyrin266, 11 months ago

A physical quantity a is related to four observable x y z and m as follows A equal to xy/mz the percentage errors of measures in x y z and m are 4 % 3% 2% and 1% respectively what is the percentage error in the quantity A

Answers

Answered by nirman95
6

Answer:

Given:

A relationship has been provided as follows :

 \boxed{ \huge{ \sf{a =  \dfrac{xy}{mz}}}}

To find:

Max error in "a" when error of each quantity has been given.

Concept:

Max error can be found by adding the error of each quantity multiplied with the respective exponential in the given Equation.

Calculation:

 \boxed{ \sf{ \red{ \frac{ \Delta a}{a}  =  \dfrac{ \Delta x}{x}  +  \dfrac{ \Delta y}{y} +  \dfrac{ \Delta m}{m} +  \dfrac{ \Delta z}{z}}}}

 \sf{ \implies  \dfrac{ \Delta a}{a} = 4 + 3 + 1 + 2}

 \sf{ \implies  \dfrac{ \Delta a}{a} = 10\%}

So final answer :

 \boxed{ \sf{max \: error = 10\%}}

Additional information:

  • For max error , always add the individual errors.
  • Remember to Multiply each term with exponential (here exponential was 1)
  • Express the final answer in percentage.

Answered by Anonymous
13

\blue{\underline{ \huge{ \blue{\boxed{ \mathfrak{\fcolorbox{red}{orange}{\purple{Answer}}}}}}}} \\  \\  \star \rm \:  \blue{Given} \\  \\  \leadsto \rm \: physical \: quantity \: A \: is \: represented \: as \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\bold{ \red{ \rm{A =  \frac{xy}{mz} }}}}\\  \\  \star \rm \:  \blue{To \: Find} \\  \\  \leadsto \rm \: max \: error \: in \: A.... \\  \\  \star \rm \:  \blue{Formula \: and \: Calculation} \\  \\  \leadsto \rm \: \orange{\% \frac{ \triangle{A}}{A} = \% \frac{ \triangle{x}}{x}  + \% \frac{ \triangle{y}}{y}  + \% \frac{ \triangle{m}}{m}  +  \frac{ \triangle{z}}{z}  } \\  \\  \leadsto \rm \: \% \frac{ \triangle{A}}{A}  = 4\% + 3\% + 2\% + 1\% \\  \\  \star \:  \boxed{ \pink{ \bold{ \rm{\% \frac{ \triangle{A}}{A}  = 10\%\:(max.\: error)}}}} \: \star

Similar questions