Math, asked by uditrajchoudhary849, 11 months ago

( A piece of ductile metal is in the form of a cylinder of diameter 1 cm and length 11 cm. It is drawn out into a wire of diameter 1 mm. What will be the length of the wire so obtained?

Answers

Answered by Anonymous
23

\huge{\underline{\underline{\mathtt{\green{Given}}}}}

A piece of ductile metal is in the form of a cylinder of diameter 1 cm and length 11 cm. It is drawn out into a wire of diameter 1 mm.

\huge{\underline{\underline{\mathtt{\green{To\:find}}}}}

What will be the length of the wire so obtained?

\huge{\underline{\underline{\mathtt{\green{Solution}}}}}

Radius of metal ductile in the form of cylinder

= 1/2 = 0.5cm

Length of metal ductile = height of metal ductile

= 11cm

Now ,

Volume of metal ductile in the form of cylinder

πr²h

\implies\sf π×(0.5)^2×11

\implies\sf π×0.25×11

\implies\sf 2.75πcm^3

After recasting in the form of metal wire

Diameter of wire = 1mm = 0.1cm

Radius of wire = 0.05cm

Volume of metal ductile in the form of cylinder is equal to the volume of new metal wire

★ Wire is also just like cylinder so we apply volume of cylinder Formula

\implies\sf 2.75π=πr^2h

\implies\sf 2.75=(0.05)^2×h

\implies\sf 2.75=0.0025h

\implies\sf h=\frac{2.75}{0.0025}=1100cm=11m

\huge\underline\frak\red{Important\:points}

  • 1km = 1000m
  • 1m = 100cm
  • 1mm = 10cm
  • 1liter = 1000ml
  • 1m³ = 1000liter
  • 1cm³ = 1000ml
  • 1hour = 60min
  • 60min = 3600sec
  • 1mm = 1000m
Answered by Anonymous
10

AnswEr :

1100cm.

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

A piece of ductile metal is in the form of a cylinder of diameter 1 cm and length 11 cm. It's drawn out into a wire of diameter 1 mm.

\setlength{\unitlength}{1.05 cm}}\begin{picture}(12,4)\thicklines\put(3,6){$.$}\put(6,6){\circle{4}}\put(6,6){\circle{0.8}}\put(5.34,6){\line(0,1){2.5}}\put(6.66,6){\line(0,1){2.5}}\put(6,8.5){\circle{4}}\put(6,8.5){\circle{0.8}}\put(5.6,6){\line(0,1){2.5}}\put(6.4,6){\line(0,1){2.5}}\put(7,7){\vector(0,1){1.5}}\put(7,7){\vector(0,-1){1}}\put(7.3,7.2){$\sf{11cm$}}\put(5.6,4.6){$\sf{1\:cm$}}\put(6,5){\vector(1,0){0.5}}\put(6,5){\vector(-1,0){0.5}}\end{picture}

\bf{\red{\underline{\underline{\bf{To\:find\::}}}}}

The length of the wire so obtained.

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

Let the the length of the wire be R

\bf{We\:have}\begin{cases}\sf{Diameter\:of\:Cylinder\:(d)=1\:cm}\\ \sf{Height\:of\:Cylinder\:(h)=11\:cm}\\ \sf{Diameter\:of\:wire\:(d)=1\:mm}\end{cases}}

Then;

→ Radius of cylinder = \sf{\dfrac{d}{2} =\dfrac{1}{2} cm}}

→ Radius of Wire = \sf{\dfrac{d}{2} =\dfrac{1}{2\times 10} mm = \dfrac{1}{20} cm}

\bf{\red{\underline{\underline{\tt{A.T.Q.\::}}}}}

Formula use :

\bf{\boxed{\bf{Volume\:of\:Cylinder=\pi r^{2} h}}}}

\mapsto\tt{\orange{Volume\:of\:Wire}\:=\:\orange{Volume\:of\:Cylinder}}\\\\\\\mapsto\tt{\pi r_{1}^{2} R_{1}=\pi r_{2}^{2} R_{2}}\\\\\\\mapsto\tt{R_{1}=\dfrac{\cancel{\pi }r_{2}^{2}R_{2} }{\cancel{\pi }r_{1}^{2}}  } \\\\\\\mapsto\tt{R_{1}=\dfrac{(\frac{1}{2})^{2} \times 11 }{(\frac{1}{20}) ^{2} } }\\\\\\\mapsto\tt{R_{1}=\dfrac{\frac{1}{4} \times 11}{\frac{1}{400} } }\\\\\\\mapsto\tt{R_{1}=\dfrac{\frac{11}{4} }{\frac{1}{400} } }\\\\\\\mapsto\tt{R_{1}=\dfrac{11}{4} \times \dfrac{400}{1} }}\\\\\\

\mapsto\tt{R_{1}=\cancel{\dfrac{4400}{4}} \:cm}\\\\\\\mapsto\tt{\red{R_{1}=1100\:cm}}

Thus,

The length of the wire so obtained is 1100 cm.

Similar questions