Physics, asked by basicall1212, 1 year ago

A piece of ice slides down a 45° incline in twice the time it takes to slide down a frictionless 45° incline. What is the coefficient of friction between the ice and the incline?

Answers

Answered by AbhijithPrakash
10

Here, θ = 45° ; s_1 = s_2 ; u = 0

On the rough incline, a_1 = g (sin θ - μ cos θ)

                                   t_1 = time taken

On the frictionless incline, a_2 = g sin θ

            t_2 = time taken, and t_1 = 2 t_2

From       s=ut+\dfrac{1}{2}at^2

               s_1=0+\dfrac{1}{2}\:g (sin θ - μ cos θ) t_1^2

and          s_2 = 0+\dfrac{1}{2}\:g sin θ · t_2^2

As,           s_1=s_2

\dfrac{1}{2}\:g (sin θ - μ cos θ) t_1^2 = \dfrac{1}{2}\:g sin θ · t_2^2

\dfrac{\text{sin }\theta - \mu\text{ cos }\theta}{\text{sin }\theta} = \dfrac{t_2^2}{t_1^2}=\dfrac{t^2_2}{(2t_2)^2}=\dfrac{1}{4}

     1 - \mu\text{ cot }\theta = \dfrac{1}{4}        or     \mu\text{ cot }\theta=1-\dfrac{1}{4}=\dfrac{3}{4}

               \bold{\mu = \dfrac{3}{4\:cot\:\theta}}


basicall1212: Nice answer thank you
AbhijithPrakash: NP :)
Ayushhxvxgx: please mark as brainliest
Ayushhxvxgx: please
Similar questions