Math, asked by Vickyvic3491, 9 months ago

A piece of wire in form of a circle has a radius of 28cm .it is reshaping into a rectangle of 50cm length. Calculate the width of the rectangle

Answers

Answered by mysticd
6

Radius \:of \:a \:circular \:wire (r) = 28\:cm

/*After reshaping it into a rectangle */

 Length (l) = 50\:cm

 Let \:width = w

 Perimeter_{\pink{(rectangle)}}= Circumfernce_{\blue{(rectangle)}}

 \implies 2(l+w) = 2\pi r

 \implies l+w = \pi r

 \implies 50 + w = \frac{22}{7} \times  28

 \implies 50 + w = 22\times 4

 \implies  w =  88 - 50

 \implies  w =  38 \:cm

Therefore.,

 \red{Width \:of \:the \:rectangle } \green{=38 \:cm}

•••♪

Answered by Anonymous
67

\bf{\underline{\underline{\bigstar\bigstar\: Given : }}}\\

\:\:

  • \footnotesize{ Radius \: of \: wire (r) = 28cm}\\

  • \footnotesize{ Length \: of \: rectangle (l) = 50cm}\\

\:\:

\bf{\underline{\underline{\bigstar\bigstar\: To \: Find : }}}\\

\:\:

  • \footnotesize{ width \: of \: rectangle( b )}\\

\:\:

\bf{\underline{\underline{\bigstar\bigstar\: Solution :}}}\\

\:\:

\footnotesize{ {circumference}_{circle} = {perimeter}_{rectangle}}\\

\footnotesize{ 2 \pi r = 2(l + b) }\\

\footnotesize{ 2 \times \dfrac{22}{7} \times 28cm = 2(50cm + b) }\\

\footnotesize{ 2 \times 22 \times 4cm = 2(50cm + b) }\\

\footnotesize{ 2 \times 88cm = 2(50cm + b) }\\

\footnotesize{ 176cm = 2(50cm + b) }\\

\footnotesize{ \dfrac{176cm}{2} = 50cm + b }\\

\footnotesize{ 88cm = 50cm + b }\\

\footnotesize{ 88cm - 50cm = b }\\

\footnotesize{ 38cm = b }\\

\:\:

\bold{\underline{\bigstar \:38cm\: is\: width \: of \: rectangle}}\\

Similar questions