Math, asked by ash303, 3 months ago

A piece of wire is bent into an equilateral triangle of side 6.6 cm. The wire is then bent into a circle. What is the radius of the circle? Please write steps.

Answers

Answered by CɛƖɛxtríα
45

Answer:

The radius of the circle is 3.15 cm.

Step-by-step explanation:

{\underline{\underline{\bf{Given:}}}}

  • A piece of wire is bent into an equilateral triangle.
  • Measure of side the equilateral triangle = 6.6 cm.
  • Later then, it is reformed into a circle.

{\underline{\underline{\bf{To\:find:}}}}

  • The radius of the circle.

{\underline{\underline{\bf{Formulae\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Perimeter}_{(Equilateral\: triangle)}=3a\: units}}}

\:\:\:\:\:\:\:\:\:\:\:\sf{\bullet\:a=side}

\underline{\boxed{\sf{{Perimeter}_{(Circle)}=2\pi r\: units}}}

\:\:\:\:\:\:\:\:\:\:\:\sf{\bullet\:r=radius}

{\underline{\underline{\bf{Solution:}}}}

As we are said that the wire used to form an equilateral triangle is used formed into a circle. So, the perimeter of the equilateral triangle equals/will be same as the perimeter of the circle.

By keeping this in the mind, we can form an equation, equating the formulas of perimeter of equilateral triangle and circle.

\:

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎{\boxed{\bf{3a=2\pi r}}}

\:

Now, by inserting the given measures in the equation:

\:

(The value of π is taken as 3.14)

\:

\:\:\:\:\:\:\::\implies{\sf{3\times 6.6=2\times 3.14\times r}}

\\

  • Simplifying the L.H.S.-

\:\:\:\:\:\:\:\:\:\::\implies{\sf{19.8=2\times 3.14\times r}}

\\

  • Simplifying the R.H.S.-

\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{19.8=6.28\times r}}

\\

  • Transposing the like terms from R.H.S. to L.H.S. (Dividing)

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{19.8}{6.28}=r}}

\\

  • Again simplifying the L.H.S.-

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{\cancel{19.8}}{\cancel{6.28}}=r}}

\\

We got,

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\boxed{\frak{\red{3.15\:cm=r}}}}

\\

{\underline{\underline{\bf{Verification:}}}}

‎ ‎ ‎ ‎ ‎ ‎To verify, substitute the obtained measure of radius in its place in the equation formed:

\:

\:\:\:\:\:\mapsto{\sf{3a=2\pi \purple{r}}}

\\

\:\:\:\:\:\mapsto{\sf{3\times 6.6=2\times 3.14\times \purple{3.15}}}

\\

\:\:\:\:\:\mapsto{\sf{19.8=2\times 3.14\times \purple{3.15}}}

\\

\:\:\:\:\:\mapsto{\sf{19.8=6.28\times \purple{3.15}}}

\\

\:\:\:\:\:\mapsto{\sf{19.8\approx 19.782}}

\\

If we round off 19.785 nearest to tenths, we get 19.8 , as a result, L.H.S. equals R.H.S. So, our obtained measure of radius is correct!

____________________________________________

Answered by Anonymous
8

\boxed{\huge{\bf{\star{Correct\:question \:-:}}}}

  • A piece of wire is bent into an equilateral triangle of side 6.6 cm. The wire is then bent into a circle. What is the radius of the circle?

AnswEr-:

  • \underline{\boxed{\star{\sf{\pink{Radius_{( \:Circle)}=3.15cm  }}}}}

EXPLANATION-:

  • \dag{\sf{\large { Given -:\:}}}

  • A piece of wire is bent into an equilateral triangle

  • The side of Equilateral triangle is of side 6.6 cm.

  • Later , The wire is bent into circle.

  • \dag{\sf{\large { To\:Find -:\:}}}

  • The Radius of Circle.

\dag{\sf{\large { Solution -:\:}}}

  • \underline{\boxed{\star{\sf{\bigstar{Perimeter_{(Equilateral \:Triangle)}=3 \times Side }}}}}

  • \underline{\boxed{\star{\sf{\bigstar{Perimeter_{( \:Circle)}=2 \times \pi\times Radius }}}}}

\dag{\sf{\large { Given \:that\:-:-:\:}}}

  • The same wire is used to bent the both shapes [ Equilateral Triangle and Circle]

  • Then ,

  • The Perimeter of Equilateral Triangle is equal to Perimeter or Circumference of Circle.

  • Or,

  • \underline{\boxed{\star{\sf{\bigstar{3 \times Side =2 \times \pi\times Radius }}}}} ______[Formula 1 ]

  • \star{\sf{\large { Here-:\:}}}

  • Side of Equilateral triangle = 6.6 cm

  • Radius of Circle = ??

  • \sf{\pi = \dfrac{22}{7}\:or\:3.14}

\dag{\sf{\large { Now  -:\:}}}

  • Put the known Values in Formula 1

  • \longrightarrow{\sf{\large { \left( 3 \times Side =2 \times \pi\times Radius \right) \:= \: Formula\:1}}}

  • \longrightarrow{\sf{\large {  3 \times 6.6 =2 \times \pi\times Radius }}}

  • \longrightarrow{\sf{\large { 19.8cm =2 \times \dfrac{22}{7} \times Radius }}}

  • \longrightarrow{\sf{\large { 19.8cm =2 \times 3.14 \times Radius }}}

  • \longrightarrow{\sf{\large { 19.8cm =6.28 \times Radius }}}

  • \longrightarrow{\sf{\large { Radius = \dfrac{19.28}{6.28}}}}

  • \longrightarrow{\sf{\large { Radius = 3.15 cm }}}

\dag{\sf{\large { Hence -:\:}}}

  • \underline{\boxed{\star{\sf{Radius_{( \:Circle)}=3.15cm  }}}}

______________________________________

\dag{\sf{\large { Verification♡-:\:}}}

  • As , We know that ,

  • \longrightarrow{\sf{\large { \left( 3 \times Side =2 \times \pi\times Radius \right) \:= \: Formula\:1}}}

  • \star{\sf{\large { Here-:\:}}}

  • Side of Equilateral triangle = 6.6 cm

  • Radius of Circle = 3.15cm

  • \sf{\pi = \dfrac{22}{7}\:or\:3.14}

Put the known Values in Formula 1

  • \longrightarrow{\sf{\large { \left( 3 \times Side =2 \times \pi\times Radius \right) \:= \: Formula\:1}}}

  • \star{\sf{\large { Now-:\:}}}

  • \longrightarrow{\sf{\large {  3 \times 6.6 =2 \times \pi\times 3.15  \:}}}

  • \longrightarrow{\sf{\large {  19.8  =2 \times 3.14 \times 3.15  \:}}}

  • \longrightarrow{\sf{\large {  19.8  =2 \times 9.891 \:}}}

  • \longrightarrow{\sf{\large {  19.8  =19.782 \:}}}

  • \star{\sf{\large { We\:know\:that\:by\:doing\:round\:off\:of\:19.782\:to\:the\:nearest\:tenths\:is-:19.8\:}}}

  • \star{\sf{\large { Now-:\:}}}

  • \longrightarrow{\sf{\large {  19.8  =19.8 \:}}}

Therefore,

  • \boxed{\sf{\large { LHS=\:RHS}}}

  • \boxed{\sf{\large { Hence,\:Verified. }}}

________________________♡______________________

Similar questions