Physics, asked by chandan123ranjit, 2 months ago

A piece of wire of resistance R is cut into 5 equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is Rp, then the ratio of R/Rp is *​

Answers

Answered by arunkumardj1345
0

Explanation:

good morning have a nice day

Answered by ItzBrainlyLords
1

☞︎︎︎ We know,

\:

 \:  \:  \:  \:  \:  \:  \:  \mapsto \large \rm \:  r∝l

\:

Initial resistance of wire = R Ω

\:

 \large \rm \: 5 \:  \: pieces \:  \:  of \: \:  wire =  \dfrac{1}{5} \:  th

\:

Resistance of each peice of wire

\:

 \large \rm \:  \:  \:  \:  \:  \:  \:  \:  =  \dfrac{r}{5}  \: Ω

\:

Now,

\:

We know :

\:

  • In parallel connection, Equivalent resistance is given by -

\:

\:  \:  \large \rm \:  \dfrac{1}{r'}  =  \dfrac{1}{r_1}  +  \dfrac{1}{r_2}  +  \dfrac{1}{r_3}  +  \dfrac{1}{r_4}  +  \dfrac{1}{r_5}

\:

 \:  \:  \large \rm \:  \dfrac{1}{r'}  =  \dfrac{1}{r/5}  +  \dfrac{1}{r/5}  +  \dfrac{1}{r/5}  +  \dfrac{1}{r/5}  +  \dfrac{1}{r/5}

\:

\:  \:  \large \rm \:  \dfrac{1}{r'}  =  \dfrac{5}{r}  +  \dfrac{5}{r}  +  \dfrac{5}{r}  +  \dfrac{5}{r}  +  \dfrac{5}{r}

\:

\:  \:  \large \rm \:  \dfrac{1}{r'}  =  \dfrac{25}{r}

\:

\:  \:  \large \rm \:  {r'}  =  \dfrac{r}{25}

\:

 \:  \:  \:  \:  \:  \:   \:  \mapsto \:  \: \large \rm finding :  \:  \dfrac{r}{r'}

\:

  : \implies \: \large \rm  \:  \dfrac{r}{r'}  =  \dfrac{r}{r/25}

\:

  : \implies \: \large \rm  \:  \dfrac{r}{r'}  =  \dfrac{25r}{r}

\:

   \therefore \boxed{ \: \large \rm  \:  \dfrac{r}{r'}  =  {25} }

\:

Similar questions