Math, asked by yuioksk, 9 months ago

A piggy bank contains hundred 50 p coins, fifty Rs 1 coins, twenty Rs 2 coins and ten Rs 5 coins. If it is equally likely that one of the coins will fall out when the bank is turned upside down, what is the probability that the coin (i) Will be a 50 p coin? (ii) Will not be a Rs.5 coin?

Answers

Answered by Anonymous
36

Answer:

1)\dfrac{5}{9}

2)\dfrac{17}{18}

Explanation:

Total number of coins in a piggy bank = 100 + 50 + 20 + 10

= 180

(i) Number of 50 p coins = 100

\sf{}Probability\ of\ getting\ 50\ p\ coins = \dfrac{Number\ of\ favourable \ outcomes}{Total\ number\ of\ possible\ outcomes}

\sf{}\Rightarrow \dfrac{100}{180}

\sf{}\Rightarrow \dfrac{10}{18}

\sf{}\Rightarrow \dfrac{5}{9}

ii) Number of Rs 5 coins = 10

\sf{}Probability\ of\ getting\ 5\ p\ coins = \dfrac{Number\ of\ favourable \ outcomes}{Total\ number\ of\ possible\ outcomes}

\sf{}\Rightarrow \dfrac{10}{180}

\sf{}\Rightarrow \dfrac{1}{18}

Probability of not getting a Rs 5 coin

\sf{}\Rightarrow1-\dfrac{1}{18}

\sf{}\Rightarrow\dfrac{1\times18-1\times1}{18}

\sf{}\Rightarrow\dfrac{18-1}{18}

\sf{}\Rightarrow\dfrac{17}{18}

Answered by Anonymous
7

Given :-

Piggy bank contains -

  • Number of 50 P Coins = 100
  • Number of 1 RS coins = 50
  • Number of 2 RS coins = 20
  • Number of 5 RS coins = 10

To FinD :-

  1. Probability of Getting 50 P coin
  2. Probability of not getting 5 RS coin.

Solution :-

Number of Total coins in Piggy bank = 100 + 50 + 20 + 10

= 180 Coins

(I) Number of 50 P coin = 100

\bold{Probability \:of \:getting\: 50\: P\: coin =\frac{Number\:Of\: Favourable\:Outcomes}{Total\: Number\:Of\: Possible\:Outcomes}}

 → \frac{100}{180} \\

 → \frac{10}{18}  \\

 →  \frac{5}{9 }  \\

(ii) Number of 5 Rs coins = 10

\bold{Probability \:of \:getting\: 5\: rs\: coin =\frac{Number\:Of\: Favourable\:Outcomes}{Total\: Number\:Of\: Possible\:Outcomes}}

 →  \frac{10}{180}  \\

 →  \frac{1}{18}  \\

Probability of Not getting 5 RS coin

→ 1 -  \frac{1}{18}  \\

 → \frac{18 - 1}{18}  \\

 → \frac{17}{18}  \\

Similar questions