Math, asked by kaneki101karma, 9 months ago

A pillar is cylindrical base and conical top. The base diameter of the pillar is 1.4m.The slant height of a conical part is 2.6m.The height of the cylindrical part is 3m.Find the cost of painting the pillar at the rate of Rs.20/sq,m.

Answers

Answered by BrainlyConqueror0901
23

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Cost\:of\:painting\:pillar=378.4\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{given : }} \\  \tt{: \implies Slant\:height\:of\:conical\:part= 2.6 \: m} \\  \\  \tt{: \implies Height \: of \: cylindrical \: part =3 \: m} \\  \\  \tt{: \implies Radius \: of \: cone = Radius \: of \: cylinder = 0.7 \: m} \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Cost\: of \: painting\:pillar =?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies  C.S.A\: of \: cone =   \pi rl  }\\   \\   \tt{:  \implies  C.S.A\: of \: cone =   \frac{22}{7}  \times  0.7 \times 2.6} \\  \\ \tt{:  \implies  C.S.A \: of \: cone =22 \times 0.26} \\  \\  \green{\tt{:  \implies  C.S.A \: of \: cone =5.72 \: { m}^{2}}}  \\  \\  \bold{As \: we \: know \: that} \\  \tt{:  \implies  C.S.A\: of \: cylinder =   2\pi rh }\\   \\   \tt{:  \implies  C.S.A\: of \: cylinder=    2\times \frac{22}{7}  \times  0.7\times 3} \\  \\ \tt{:  \implies  C.S.A\: of \: cylinder =22 \times 0.6} \\  \\  \green{\tt{:  \implies C.S.A \: of \: cylinder  = 13.2\: { m}^{2}}}  \\  \\  \bold{for \: Total \: C.S.A} \\  \tt{:  \implies C.S.A \: of \: pillar= C.S.A \: of \: (cone + cylinder)} \\  \\  \tt{:  \implies C.S.A \: of \: pillar = 5.72+ 13.2} \\  \\   \green{\tt{:  \implies C.S.A \: of \: pillar =18.92\:{m}^{2}}}

 \bold{cost \: of \: 1 \:  {m}^{2}  \: painting \: pillar =20 \: rupees}  \\  \tt{:  \implies cost \: of \: painting \: \:  18.92 {m}^{2}  = 20 \times 18.92} \\  \\  \green{\tt{:  \implies cost \: of \: painting \:  \:pillar  = 378.4 \: rupees}}

Similar questions