Math, asked by mepratikgaikwad, 1 year ago

A plane left 30 min late then its sheduled time and in order to reach the destination 1500 km away in time it had to be increase its speed by 100 km/h from its usual speed find the actual speed

Answers

Answered by ADITYA1100
0


Sol:
Let the usual time taken by the aeroplane = x km/hr
Distance to the destination = 1500 km
Case (i)
Speed = Distance / Time = (1500 / x) Hrs
 
Case (iI)
Time taken by the aeroplane = (x - 1/2) Hrs
Distance to the destination = 1500 km
Speed = Distance / Time = 1500 / (x - 1/2) Hrs
 
Increased speed = 250 km/hr
 
⇒ [1500 / (x - 1/2)] - [1500 / x] = 250
⇒ 1/(2x2 - x) = 1/6
⇒ 2x2 - x = 6
⇒ (x - 2)(2x + 3) = 0
⇒ x = 2 or -3/2
Since, the time can not be negative,
The usual time taken by the aeroplane = 2 hrs
and the usual speed = (1500 / 2) = 750 km/hr.
Answered by TheBrainliestUser
0

Solution :-

Let the original speed of train be x km/hr

New speed = (x + 100) km/hr

We know that,

Time = Distance / Speed

Given : A plane left 30 minutes or 1/2 hours later than the scheduled time.

According to the question,

=> 1500/x - 1500/(x + 100) = 1/2

=> (1500x + 15000 - 1500x)/x(x + 100) = 1/2

=> 2(15000) = x(x + 100)

=> 30000 = x² + 100x

=> x² + 100x - 30000 = 0

=> x² + 600x - 500x - 30000 = 0

=> x(x + 600) - 500(x + 600) = 0

=> (x - 500) (x + 600) = 0

=> x = 500 or x = - 600

∴ x ≠ - 600 (Because speed can't be negative)

Hence,

Its usual speed = 500 km/hr

Similar questions