Math, asked by ramansandhursm93911, 10 months ago

A plane left 30 min later than its scheduled time to reach its destination 1500 km away. In order to reach in time, it increases its speed by 250 km/hr. What is its original speed

Answers

Answered by shivani5019
2

answers ☺️☺️ by an easy method.

hope it will help you

Attachments:
Answered by Anonymous
3

Given :-

  • Time (t) = 30min
  • Distance (d) = 1500km
  • Increased speed = 250km/hr

To find :-

  • What is its original speed ?

Solution :-

Let usual speed of plane = x km / hr

then usual time taken (t_{1})  {\implies}\frac{Distance}{speed}

 {\implies}\frac{1500}{x} hrs

New speed

{\implies} ( {x + 250} )km /hr

New time t_{2}

{\implies}Distance / speed

{\implies}1500 / x + 250 hrs

So,

{\implies}t_{1} - t_{2} =  \frac{1}{2}

{\implies} \frac{1500}{x}  -  \frac{1500}{x  \: + \:  250}  =  \frac{1}{2} \\  \\ {\implies} 1500 \: (  \: \frac{1}{x}  -  \frac{1}{x \:  + 250} ) \:  =  \frac{1}{2} \\  \\ {\implies} 1500 \: (  \frac{ x \:  + 250 \:  -  \: x}{x \: ( \:  x  \:  +  \: 250 \: ) \: } ) =  \frac{1}{2}  \\  \\ {\implies}  \frac{1500 \:  \times  \: 250}{ {x}^{2}  +  \: 250 \: x}  =  \frac{1}{2} \\  \\ {\implies} {x}^{2}  +  250x \:  =  \: 1500 \:  \times 250 \:  \times 2 \:  \\ \\ {\implies}  {x}^{2}  +  250x \:  = 750000 \:  = 0 \\  \\{\implies} {x}^{2}  +  250x \:   -  750000 \:  = 0 \\  \\ {\implies} {x}^{2}  + (1000 - 750)x - 750000 = 0 \\  \\{\implies}   { x }^{2}  + 1000x - 750x - 750000 = 0 \\  \\ {\implies}x(x + 1000) - 750(x + 1000) = 0 \\  \\{\implies} (x + 1000) \: (x - 750) = 0

{\implies}  x =  - 1000 \: or \:  x = 750

Speed cannot be negative .

So, the original speed of plane is 750 km/hr.

_____________________

Similar questions