CBSE BOARD XII, asked by aniketrawat, 1 year ago

a plane left 30 minutes later than the scheduled time and in order to reach its destination 1500 km away in time it had to incrus its speed by 100 km 1 h from the usual speed find the usual speed

Answers

Answered by vanshikaaax
19
Let the usual time taken by the aeroplane = x km/hr
Distance to the destination = 1500 km
Case (i)
Speed = Distance / Time = (1500 / x) Hrs
 
Case (iI)
Time taken by the aeroplane = (x - 1/2) Hrs
Distance to the destination = 1500 km
Speed = Distance / Time = 1500 / (x - 1/2) Hrs
 
Increased speed = 250 km/hr
 
⇒ [1500 / (x - 1/2)] - [1500 / x] = 250
⇒ 1/(2x2 - x) = 1/6
⇒ 2x2 - x = 6
⇒ (x - 2)(2x + 3) = 0
⇒ x = 2 or -3/2
Since, the time can not be negative,
The usual time taken by the aeroplane = 2 hrs
and the usual speed = (1500 / 2) = 750 km/hr.
I hope the answer was helpful to you If it was please mark it as brainlist ❤️

rahul4598: the increased speed is 100km/h and u have taken 250km/h
Answered by TheBrainliestUser
74
Solution :-

Let the original speed of train be x km/hr
New speed = (x + 100) km/hr

We know that,
Time = Distance / Speed

Given : A plane left 30 minutes or 1/2 hours later than the scheduled time.

According to the question,

=> 1500/x - 1500/(x + 100) = 1/2
=> (1500x + 15000 - 1500x)/x(x + 100) = 1/2
=> 2(15000) = x(x + 100)
=> 30000 = x² + 100x
=> x² + 100x - 30000 = 0
=> x² + 600x - 500x - 30000 = 0
=> x(x + 600) - 500(x + 600) = 0
=> (x - 500) (x + 600) = 0
=> x = 500 or x = - 600

∴ x ≠ - 600 (Because speed can't be negative)


Hence,
Its usual speed = 500 km/hr
Similar questions