Physics, asked by tiyatakshak98088, 10 months ago

A planet of mass M is revolving round the sun
in an elliptical orbit. If its angular momentum is
I then the area swept per second by the line joining
planet to sun will be:-

Attachments:

Answers

Answered by ShivamKashyap08
18

{ \huge \bf { \mid{ \overline{ \underline{Question}}} \mid}}

A planet of mass M is revolving round the sun in an elliptical orbit. If its angular momentum is J then the area swept per second by the line joining planet to sun will be?

\huge{\bold{\underline{\underline{Answer}}}}

\huge{\bold{\underline{Given:-}}}

  • Angular momentum = J
  • Let the Radius be "r"
  • And, Let it swipe an angle "dθ" at centre.

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

Applying Kepler's Second law:-

Let dA be the Area swept under a time dt.

So, dA = Area swept.

\large{\boxed{\tt dA = \text{\tt Area of Triangle(Figure)}}}

\large{\tt \leadsto dA = \dfrac{1}{2} \times Base \times Height}

Substituting,

\large{\tt \leadsto dA =  \dfrac{1}{2} \times (SP) \times (P' M)}

Here P' M = v sin θ × dt (Applying Trigonometric ratios)

Substituting the values,

  • SP = r
  • P'M = (v sin θ). dt

\large{\tt \leadsto dA = \dfrac{1}{2} \times  r \times (v sin \theta).dt }

\large{\tt \leadsto dA = \dfrac{1}{2} . rv sin \theta \times dt}

\large{\tt \leadsto \dfrac{dA}{dt} = \dfrac{1}{2}. rv sin \theta}

Multiplying with Mass on Both Numerator & Denominator.

\large{\tt \leadsto \dfrac{dA}{dt} = \dfrac{1}{2} .  \dfrac{rv sin \theta \times m}{m}}

⇒ P = mv

Substituting,

\large{\tt \leadsto \dfrac{dA}{dt} = \dfrac{r \times P sin \theta}{2m}}

From Cross Product of Vectors we Know,

\large{\boxed{\vec{r} \times \vec{P}  = r \: P \: sin \theta}}

Substituting,

\large{ \leadsto \dfrac{dA}{dt} = \dfrac{\vec{r} \times \vec{P}}{2m}}

But r × P = Angular momentum = J

Substituting,

\large{ \tt \leadsto \dfrac{dA}{dt} = \dfrac{J}{2m}}

\huge{\boxed{\boxed{\tt \dfrac{dA}{dt} = \dfrac{J}{2m}}}}

So, the Areal velocity per second will be J/2m (Option- 2)

\rule{300}{1.5}

Attachments:
Similar questions