Math, asked by Mister360, 4 months ago

A plastic box 1.5m long, 1.25m wide and 65 cm deep is to be made. It is to be open at the top. Ignoring the thickness of the plastic sheet, determine:

(i) the area of the sheet required for making the box.

(ii) the cost of sheet for it, if a sheet measuring 1m2 cost Rs. 20.

Answers

Answered by saanvigrover2007
16

Length of box = 1.5 m,Breadth = 1.25 m,Height = 0.65 m

⇒ Area to be white-washed =

Area of cuboid − Area of base

(i) Area of sheet requred =2lh+2bh+lb

___[Box is open]

=[2×1.5×0.65+2×1.25×0.65+1.5×1.25] m²

=(1.95+1.625+1.875)m² = 5.45 m²

ii) Cost of sheet per m² area = Rs. 20

Cost of sheet of 5.45m² area = Rs. 5.45×20

= Rs. 109

Answered by ItzBrainlyBeast
22

\LARGE\mathfrak{\underline{✯\; Given :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Length of the box ( l )= 1.5 m}

\qquad\tt{:}\longrightarrow\large\textsf{Width of the box ( b ) = 1.25 m}

\qquad\tt{:}\longrightarrow\large\textsf{Depth of the box = 65 cm ( h ) = 0.65 m}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{✯\; To \; \; Find :-}}

\large\textsf{                                                               }

  1. The area of the sheet required for making the box = ?
  2. The cost of the sheet for it , if a sheet measuring 1m² cost ₹20 .

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{✯\; Formula :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2 ( lb + bh + hl )}$}}

  • l = Length
  • b = Width or Breadth
  • h = Depth or Height

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{✯\; How \; \; To \; \; Solve :-}}

\large\textsf{                                                               }

  • As we have been provided with the information that a box is made with open at the . We have to find the area of this box , so to find the area of this box first we have to find the Total Surface Area ( T.S.A. ) of the box and then we should subtract the Area of the top of the box box .
  • By calculating the above steps we would get the Area of the sheet required to make a box with open top .
  • Now once we get the Area of the sheet we can calculate the total cost of the sheet required to make the box .

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{✯\; Solution :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{Area}}_{\large\textsf{( \; Sheet \; )}} = {\large\textsf{T.S.A.}}_{\large\textsf{( \; Box \; )}} - {\large\textsf{Area}}_{\normalsize\textsf{( \; Top of the box \; )}}$}

\qquad\tt{:}\longrightarrow\large\textsf{\; \; \; = [2 ( lb + bh + hl )] - ( l × b ) }

\qquad\tt{:}\longrightarrow\large\textsf{\; \; \; = 2 [( 1.5 × 1.25 ) + ( 1.25 × 0.65 ) + ( 0.65 × 1.5 )] - ( 1.5 × 1.25 )}

\qquad\tt{:}\longrightarrow\large\textsf{\; \; \; = 2 ( 1.875 + 0.8125 + 0.975 ) - 1.875}

\qquad\tt{:}\longrightarrow\large\textsf{\; \; \; = 2 ( 3.6625 ) - 1.875}

\qquad\tt{:}\longrightarrow\large\textsf{\; \; \; = 7.325 - 1.875}

\qquad\tt{:}\longrightarrow\boxed{\large\mathfrak\textcolor{magenta}{\; \; \; = \; 5.45 \;  m²}}

\large\textsf\textcolor{orange}{∴ Area of the sheet required = 5.45 m²}

\large\textsf{                                                               }

◈ ━━━━━━━ ⸙ ━━━━━━━ ◈

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Cost of the sheet = 20 × 5.45}

\qquad\tt{:}\longrightarrow\boxed{\large\mathfrak\textcolor{magenta}{\; \; \; = ₹ 109}}

\large\textsf\textcolor{orange}{∴ Cost of the sheet = ₹ 109}

\large\textsf{                                                               }

__________________________________________________________

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{✯\; More \; \; Formulas:-}}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf\textcolor{red}{( \; Cuboid \; )}} = \large\textsf{2h ( l + b )}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2 ( lb + bh + hl )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{l×b×h}$}

◈ ━━━━━━━ ⸙ ━━━━━━━ ◈

\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf\textcolor{red}{( \; Cube \; )}} = \large\textsf{4×l²}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{6 × l²}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{l²}$}

◈ ━━━━━━━ ⸙ ━━━━━━━ ◈

\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf\textcolor{red}{( \; Cylinder \; )}} = \large\textsf{2 × πrh}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{2πr × ( r + h )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{πr²h}$}

◈ ━━━━━━━ ⸙ ━━━━━━━ ◈

\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf\textcolor{red}{( \; Cone \; )}} = \large\textsf{πrl}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\textsf{πr × ( r + l )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cone \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{1}}{\large\textsf{3}}$}\large\textsf{× πr²h}

◈ ━━━━━━━ ⸙ ━━━━━━━ ◈

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf\textcolor{red}{( \; Sphere \; )}} = \large\textsf{4πr²}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Sphere \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{4}}{\large\textsf{3}}$}\large\textsf{× πr³}

__________________________________________________________

Similar questions