A player is sitting on the top of the tower of Height 20m observes the angle of depression of a ball lying on the ground is 60° find the distance between the foot of the tower and the ball
Answers
Answered by
13
Height of the tower is BC = 20m and D is the ball
DC is the distance from foot of the ball to the tower.
∠ABD =∠BDC = 60°
Let DC =x m
then tan60°= BC/DC= 20/x [tan theta= perpendicular/base ]
⇒x =20/√3m (tan60° =√3)
So the distance between the foot of the tower and the ball is 20/√3m= 20* 1.732 = 11.54 m ANS
if the ans is helpful plz mark me brainliest
Attachments:
Answered by
6
h = 20 m
base = x m
angle = 60
tan 60 = p/b
root 3 = 20/ x
x = 20 /root3
x = 20 x root3 / root3 x root3
x = 20 root3 / 3
x = 11.54 m ans
Similar questions