Science, asked by sirishakommerla0713, 8 months ago

A player kicks up a ball at an angle 0 with horizontal. The horizontal range is maximum when '0' is equal to

Answers

Answered by Anonymous
0

Answer:

hilu ❤️

Explanation:

Angle of projection θ=30

Angle of projection θ=30 0

Angle of projection θ=30 0

Angle of projection θ=30 0 initial velocity, μ=15 m/sec

Angle of projection θ=30 0 initial velocity, μ=15 m/seca) Maximum height =

Angle of projection θ=30 0 initial velocity, μ=15 m/seca) Maximum height = 2g

Angle of projection θ=30 0 initial velocity, μ=15 m/seca) Maximum height = 2gμ

Angle of projection θ=30 0 initial velocity, μ=15 m/seca) Maximum height = 2gμ 2

Angle of projection θ=30 0 initial velocity, μ=15 m/seca) Maximum height = 2gμ 2 sin

Angle of projection θ=30 0 initial velocity, μ=15 m/seca) Maximum height = 2gμ 2 sin 2

Angle of projection θ=30 0 initial velocity, μ=15 m/seca) Maximum height = 2gμ 2 sin 2 θ

=

= 2×9.8

= 2×9.8(15)

= 2×9.8(15) 2

= 2×9.8(15) 2 ×sin

= 2×9.8(15) 2 ×sin 2

= 2×9.8(15) 2 ×sin 2 30

= 2×9.8(15) 2 ×sin 2 30 0

= 2×9.8(15) 2 ×sin 2 30 0

= 2×9.8(15) 2 ×sin 2 30 0

= 2×9.8(15) 2 ×sin 2 30 0

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 m

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile =

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ =

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.8

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0 =1.53 sec

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0 =1.53 secc) Range =

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0 =1.53 secc) Range = g

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0 =1.53 secc) Range = gμ

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0 =1.53 secc) Range = gμ 2

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0 =1.53 secc) Range = gμ 2 sin2θ

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0 =1.53 secc) Range = gμ 2 sin2θ

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0 =1.53 secc) Range = gμ 2 sin2θ

= 2×9.8(15) 2 ×sin 2 30 0 =2.869 mb) Time of flight for projectile = g2μsinθ = 9.82×15×sin30 0 =1.53 secc) Range = gμ 2 sin2θ

Similar questions