Physics, asked by kalpshah76, 9 months ago

A player throws a ball that reaches to the another
player in 4s. If the height of each player is 1.5m
the maximum height attained by the ball from the
ground level is :
(1) 19.6 m
(2) 21.1 m
(3) 23.6 m
(4) 25.1 m​

Answers

Answered by Rohit18Bhadauria
75

Given:

Time taken by ball to reach other player,t= 4s

Height of each player,h= 1.5m

To Find:

Maximum height attained by the ball from the  ground level

Solution:

We know that,

In a projectile motion-

  • Time of flight T is given by

\pink{\underline{\boxed{\bf{T=\dfrac{2u\sin\theta}{g}}}}}

  • Maximum height attained by projectile H is given by

\purple{\underline{\boxed{\bf{H=\dfrac{u^{2}\sin^{2}\theta}{2g}}}}}

where,

u is initial velocity

θ is the angle by which projectile is projected or thrown

g is acceleration due to gravity

━━━━━━━━━━━━━━━━━━━━━━━━━━

Let the time of flight of ball thrown be T

So,

\longrightarrow\rm{T=\dfrac{2u\sin\theta}{g}}

\longrightarrow\rm{4=\dfrac{2u\sin\theta}{g}}

\longrightarrow\rm{\dfrac{2u\sin\theta}{g}=4}

\longrightarrow\rm{u\sin\theta=\dfrac{4g}{2}}

\longrightarrow\rm{u\sin\theta=2g}------(1)

Let the maximum height attained by ball be H

So,

\longrightarrow\rm{H=\dfrac{u^{2}\sin^{2}\theta}{2g}}

\longrightarrow\rm{H=\dfrac{(u\sin\theta)^{2}}{2g}}

From (1), we get

\longrightarrow\rm{H=\dfrac{(2g)^{2}}{2g}}

\longrightarrow\rm{H=2g}

\longrightarrow\rm{H=2\times9.8}

\longrightarrow\rm{H=19.6\ m}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Let the maximum height attained by the ball from the  ground level be H'

So,

\longrightarrow\rm{H'=H+h}

\longrightarrow\rm{H'=19.6+1.5}

\longrightarrow\rm\green{H'=21.1\ m}

Hence, the maximum height attained by the ball from the  ground level is 21.1 m.

Answered by Anonymous
16

QUESTION:-

✯.ᴀ ᴘʟᴀʏᴇʀ ᴛʜʀᴏᴡs ᴀ ʙᴀʟʟ ᴛʜᴀᴛ ʀᴇᴀᴄʜᴇs ᴛᴏ ᴛʜᴇ ᴀɴᴏᴛʜᴇʀ ᴘʟᴀʏᴇʀ ɪɴ 4s. ɪғ ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏғ ᴇᴀᴄʜ ᴘʟᴀʏᴇʀ ɪs 1.5ᴍ ᴛʜᴇ ᴍᴀxɪᴍᴜᴍ ʜᴇɪɢʜᴛ ᴀᴛᴛᴀɪɴᴇᴅ ʙʏ ᴛʜᴇ ʙᴀʟʟ ғʀᴏᴍ ᴛʜᴇ ɢʀᴏᴜɴᴅ ʟᴇᴠᴇʟ ?

ANSWER

\Large\underline\bold{GIVEN, }

 \sf\dashrightarrow time\:taken\:(T)=4sec

 \sf\dashrightarrow   height\:of\:the\:player(H)=1.5m

 \sf\dashrightarrow  initial\:velocity=u

 \sf\dashrightarrow  angle\:by\:which\:ball\:is\:thrown = \theta

 \sf\dashrightarrow  acceleration\:because \:of\:gravity=g

\Large\underline\bold{TO\:FIND,}

 \sf\dashrightarrow  maximum\:height\:\:attained\:by\:the\:ball.

\Large\underline\bold{SOLUTION,}

 \sf\therefore TIME\:by\:flight\:(T)= \dfrac{2u\sin\theta}{g}

 \sf\therefore height\:attained(H)= \dfrac{u^{2}\sin^{2}\theta}{2g}

NOW,

\sf\implies{T=\dfrac{2u\sin\theta}{g}}

\sf\implies{4=\dfrac{2u\sin\theta}{g}}

\sf\implies{4g=2u\sin\theta}

\sf\implies{u\sin\theta=\dfrac{4g}{2}}

\sf\implies{u\sin\theta=\dfrac{\cancel{4g}}{\cancel{2}}}

 \sf\implies{u\sin\theta=2g}..........eq^1

NOW,FOR HEIGHT,

\sf\implies{H=\dfrac{u^{2}\sin^{2}\theta}{2g}}

\sf\implies{H=\dfrac{(u\sin\theta)^{2}}{2g}}

FROM EQ¹ WE GET,

\sf\implies{H=\dfrac{(2g)^{2}}{2g}}

\sf\implies{H=\dfrac{\cancel{(2g)} \times (2g)}{\cancel{2g}}}

\sf\implies{H=2g}

\sf\implies{H=2\times9.8}

\sf\implies{H=19.6\ m}

\sf {\fbox { H=19.6m}}

\sf\implies{H'=H+h}

\sf\implies{H'=19.6+1.5}

\sf\implies{H'=21.1\ m}

\large{\boxed{\sf{=21.1m}}}

 \sf\large\therefore hence,\:option\:2\:is\:correct\:21.1m

____________________________

Similar questions