Physics, asked by bleh4042, 1 month ago

A player throws a ball upwards with an initial velocity of 29.4 m/s. Find the maximum height it attains.
A. O
- 44.1 m
B. O
1.5 m
C. O
444
D. O
44.1 m

Answers

Answered by Yuseong
3

Answer:

44.1 m

Explanation:

As per the provided information in the given question, we have :

  • Initial velocity (u) = 29.4 m/s

Here,

  • Final velocity (v) will be 0.
  • Acceleration due to gravity (g) will be –9.8 m/s. (As it is thrown in upward direction.)

We are asked to calculate the maximum height it attains.

By using the third equation of motion for fréély falling bodies,

\\  \longrightarrow \sf{\quad { v^2 - u^2 = 2gh }} \\

  • v denotes final velocity
  • u denotes initial velocity
  • g denotes acceleration due to gravity
  • h denotes height

Substituting values,

  \\ \longrightarrow \sf{\quad { (0)^2 - (29.4)^2 = 2 \times (-9.8) \times h }} \\

  \\ \longrightarrow \sf{\quad { 0 -  864.36 = -19.6 \times h }} \\

  \\ \longrightarrow \sf{\quad {  -  864.36 = -19.6 \times h }} \\

  \\ \longrightarrow \sf{\quad {\cancel{ \dfrac{- 864.36}{-19.6} }= h }} \\

  \\ \longrightarrow \quad \underline{\boxed { \textbf{\textsf{44.1 \; m = h}}} } \\

Therefore, the maximum height it attains is 44.1 m.

 \underline{ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad} \\

More Information :

Equations of motion for fréély falling bodies :

\boxed{ \begin{array}{cc}    \pmb{\sf{ \quad \: v = u + gt \quad}}  \\  \\  \pmb{\sf{ \quad \:  h= ut +  \cfrac{1}{2}g{t}^{2}  \quad \: } } \\ \\  \pmb{\sf{ \quad \:  {v}^{2} -  {u}^{2}  = 2gh \quad \:}}\end{array}}

  • v denotes final velocity
  • u denotes initial velocity
  • g denotes acceleration due to gravity
  • t denotes time
  • h denotes height

Similar questions