A plus b is 225 .find (1plus tan a)(1 plus tan b)
Answers
Answered by
1
Hi ,
It is given that ,
A + B = 225
tan( A+ B ) = tan 225
[ ( tanA + tanB )/(1-tanAtanB) = tan ( 180 + 45 )
tanA+tanB = tan 45 ( 1 - tanAtanB )
tanA + tanB = 1 - tanAtanB
tanA + tanB + tanAtanB = 1
tanA + tanAtanB + tanB = 1
tanA ( 1 + tan B ) + tanB = 1
add 1 bothsides of the equation , we get
tanA ( 1 + tanB ) + tanB + 1 = 1+ 1
tanA ( 1 + tanB ) + 1 ( 1 + tanB ) = 2
( 1 + tanB ) ( tanA + 1 ) = 2
Therefore ,
( 1 + tanA )( 1 + tanB ) = 2
I hope this helps you.
: )
It is given that ,
A + B = 225
tan( A+ B ) = tan 225
[ ( tanA + tanB )/(1-tanAtanB) = tan ( 180 + 45 )
tanA+tanB = tan 45 ( 1 - tanAtanB )
tanA + tanB = 1 - tanAtanB
tanA + tanB + tanAtanB = 1
tanA + tanAtanB + tanB = 1
tanA ( 1 + tan B ) + tanB = 1
add 1 bothsides of the equation , we get
tanA ( 1 + tanB ) + tanB + 1 = 1+ 1
tanA ( 1 + tanB ) + 1 ( 1 + tanB ) = 2
( 1 + tanB ) ( tanA + 1 ) = 2
Therefore ,
( 1 + tanA )( 1 + tanB ) = 2
I hope this helps you.
: )
Answered by
1
Step-by-step explanation:
Given A + B = 225.
Multiply with tan on both sides, we get
Tan(A + B) = tan 225
Tan(A + B) = tan(180 + 45)
Tan(A + B) = Tan 45
Tan(A + B) = 1.
Tan A + Tan B/1 - Tan A Tan B = 1
Tan A + Tan B = 1 - Tan A Tan B
Tan A + Tan B + Tan A Tan B = 1 -------- (1)
Given (1 + Tan A)(1 + Tan B)
= 1 + Tan B + Tan A + Tan A Tan B
= 1 + 1
= 2.
Therefore (1 + Tan A)(1 + Tan B) = 2.
Hope it's help you..
Similar questions