Math, asked by PalakGupta2802, 21 days ago

a point moves so that the sum of uts distance from ie.0 and -ae, 0 is 2q prove that locus of the point is​

Attachments:

Answers

Answered by shubhamugale2005
0

Answer:

Mass of neutron = 1.0087 a.m.u. Mass of proton = 1.0073 a.m.u. Mass of helium nucleus = 4.0015 a.m.u. As we know that, in a helium nucleus there are 2 neutrons and 2 protons

Answered by 12thpáìn
1

We have to find Area Enclosed by ellipse

X'+ Since Ellipse is symmetrical about both x-axis and y-axis.

 \sf{Area \:  of \:  ellipse = 4 \times  Area  \: of  \: OAB}

\sf{Area \:  of \:  ellipse = 4 \times     \int^{a}_0y \: dx }

We know that

 \:  \:  \:  \:  \:  \implies\sf \dfrac{ {x}^{2} }{ {a}^{2} }  +  \dfrac{ {y}^{2} }{ {b}^{2} }  = 1

 \:  \:  \:  \:  \:  \implies\sf  \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 - \dfrac{ {x}^{2} }{ {a}^{2} }

{ \:  \:  \:  \:  \:  \implies\sf  \dfrac{ {y}^{2} }{ {b}^{2} }  =  \dfrac{ {a}^{2}   - {x}^{2} }{ {a}^{2} }  }

{ \:  \:  \:  \:  \:  \implies\sf   {y}^{2}   =  \dfrac{ {b}^{2}(  {a}^{2}   - {x}^{2} )}{ {a}^{2} }  }

{ \:  \:  \:  \:  \:  \implies\sf   y = \pm\sqrt{  \dfrac{ {b}^{2}(  {a}^{2}   - {x}^{2} )}{ {a}^{2} }  }}

{ \:  \:  \:  \:  \:  \implies\sf   y = \pm \dfrac{b}{a} \sqrt{   (  {a}^{2}   - {x}^{2} )  }}

Since OAB is in 1st

Quadrant, value of y is positive

{ \:  \:  \:  \:  \:  \implies\sf   y =  \dfrac{b}{a} \sqrt{     {a}^{2}   - {x}^{2}   }}

\sf{Area \:  of \:  ellipse = 4 \times     \int^{a}_0y \: dx }

  • Putting the value of y

\sf{Area \:  of \:  ellipse = 4 \times     \int^{a}_0 \dfrac{b}{a} \sqrt{     {a}^{2}   - {x}^{2}   }\: dx }

\sf{Area \:  of \:  ellipse =  \dfrac{4b}{a}  \times     \int^{a}_0  \sqrt{     {a}^{2}   - {x}^{2}   }\: dx }

  \bf it \: is \:of \: form    \:  \:  \:  \:  \: \\ \boxed{ \sf \sqrt{ {a}^{2} -  {x}^{2}  }  \: dx =  \frac{1}{2} x \sqrt{ {a}^{2} -  {x}^{2}  }  +   \dfrac{ {a}^{2} }{2} {\sin }^{ - 1}   \dfrac{x}{a} + c }

\sf{Area \:  of \:  ellipse =  \dfrac{4b}{a}  \bigg [ \dfrac{x}{2} \sqrt{ {a}^{2} -  {x}^{2}  } +  \dfrac{ {a}^{2} }{2} {\sin }^{ - 1}  \frac{x}{a}  \bigg ]^{a} _0  }

\sf{Area \:  of \:  ellipse =  \dfrac{4b}{a}  \bigg [  \bigg(\dfrac{a}{2} \sqrt{ {a}^{2} -  {a}^{2}  } +  \dfrac{ {a}^{2} }{2} {\sin }^{ - 1}  \dfrac{a}{a}  \bigg) -   \bigg(\dfrac{0}{2} \sqrt{ {a}^{2} -  0  } +  \dfrac{ {a}^{2} }{2} {\sin }^{ - 1}  (0)  \bigg)  \bigg ]^{a} _0  }

\sf{Area \:  of \:  ellipse =  \dfrac{4b}{a}  \bigg [  0 +  \dfrac{ {a}^{2} }{2}   \sin ^{ - 1} (1) - 0 - 0 \bigg ]   }

\sf{Area \:  of \:  ellipse =  \dfrac{4b}{a}   \times  \dfrac{ {a}^{2} }{2}   \sin ^{ - 1}(1)   }

\sf{Area \:  of \:  ellipse =  2ab \times  \sin^{ - 1} (1)  }

\sf{Area \:  of \:  ellipse =  2ab \times   \dfrac{\pi}{2}   }

~~\underbrace{\boxed{\bf{Area \:  of \:  ellipse = \pi ab}}}

Hence, the Required Area = πab units².

Attachments:
Similar questions