A point O inside a rectangle ABCD is joined to the vertices. Prove that: ar(Δ AOD)+AR(ΔBOC)=AR(ΔAOB)+AR(ΔCOD)
Answers
Given: A rect∠ ABCD and a point o inside it. OA, OB, OC and OD are joined.
To prove: ar(ΔAOD)+ar(ΔBOC) = ar(ΔAOB) + ar(ΔCOD)
Construction: Draw EOF ║ AB and GOH ║AD
Proof:
ar(ΔAOD)+ar(ΔBOC) = 1/2 (AD × EO) + 1/2(BC+OF)
= 1/2(AD×EO) + 1/2(AD×OF)
= 1/2 AD × (EO + OF)
= 1/2 AD × EF
= 1/2 AD×AB
= 1/2 ar(rect∠ ABC) .............(i)
Now,
ar(ΔAOD) + ar(ΔCOD) = 1/2 (OG ×AB) + 1/2(OH×CD)
= 1/2 (OG× AB) + 1/2(OH×AB) [∵ AB= CD]
= 1/2 AB× GH
= 1/2 AB× AD
= 1/2 ar (rect∠ ABCD) .................(ii)
Hence, from equation (i)and (ii), it is proved that,
ar(Δ AOD)+ar(ΔBOC)=ar(ΔAOB)+ar(ΔCOD)
Answer:
ar(Δ AOD) + ar(Δ BOC) = 1/2 (AD× BD)+ 1/2 (BC× OQ)
∵ AD = BC (opp. Sides of rectangle)
⇒ ar(Δ AOD) + ar(Δ BOC) = 1/2 (AD× OP)+ 1/2 (AD× OQ)
= 1/2 (AD × (OP+OQ))
= 1/2 (AD× PQ)
= 1/2 (AB× AB)
= 1/2 ar(rect. ABCD) ….. (1)
And,
ar(Δ AOB)+ar(Δ COD) = 1/2 (AB× OS)+ 1/2 (CD× OR)
∵ AB = CD (opp. Sides of rectangle)
⇒ ar(Δ AOB)+ar(Δ COD) = 1/2 (AB× OS)+ 1/2 (AB× OR)
= 1/2 AB× (OS+OR)
= 1/2 (AB× SR)
= 1/2 (AB× AD)
= 1/2 ar(rect. ABCD) …… (2)
From (1) and (2) we get,
ar(Δ AOD) + ar(Δ BOC) = ar(Δ AOB)+ar(Δ COD)