Math, asked by hotcupid54, 6 months ago

A point O inside a rectangle ABCD is joined to the vertices . prove that the sum of the areaa of a pair of opposite triangles so formed is equal to the sum of the areas of the other pair of triangles.​

Answers

Answered by AarnaWengiesfan
0

Answer:

I

Step-by-step explanation:

A point O inside a rectangle ABCD is joined to the vertices . prove that the sum of the areaa of a pair of opposite triangles so formed is equal to the sum of the areas of the other pair of triangles.​

Answered by Anonymous
29

\huge\underline{\underline{\texttt{{Question:}}}}

  • A point O inside a rectangle ABCD is joined to the vertices . prove that the sum of the areaa of a pair of opposite triangles so formed is equal to the sum of the areas of the other pair of triangles.

\huge\underline{\underline{\texttt{{Given:}}}}

  • \small\bold{a \: rect \: ABCD \: and \: O \: is \: a \: point \: inside \: in \: it. \: OA, \: OB, \: OC, \: and \: OD \: have \: been \: joined}

\huge\underline{\underline{\texttt{{To\:Prove:}}}}

  • \small\bold{ar(\triangle \: AOD) + ar(\triangle \: BOC) = ar(\triangle \: AOB) + ar(\triangle \: COD).}

\huge\underline{\underline{\texttt{{Construction:}}}}

  • \small\bold{draw \: EOF \:  || \: AB \: and \: LOM || \: AD.  }

\huge\underline{\underline{\texttt{{Proof:}}}}

\small\bold{EOF \:  || \:AB \: and \: DA \: cuts \: them.}

\small\bold{\therefore \: \angle \: DEO \:  =  \: \angle \: EAB = 90\degree \:  \: } \\

\small\bold{\therefore \: OE \: \bot \: AD.}

Similarly, OF ⊥ BC ; OL ⊥ AB and OM ⊥ DC.

\small\bold{\therefore \: ar(\triangle \: AOD) + ar(\triangle \: BOC)} \\

 \small\bold{ = ( \frac{1}{2} \times AD \times OE) + ( \frac{1}{2} \times BC \times OF)  }

\small\bold{ =  \frac{1}{2}AD \times (OE + OF) \:  \: (\therefore \: BC = AD) }

\small\bold{ =  \frac{1}{2} \times AD \times EF =  \frac{1}{2} \times AD \times AB \:  \:  \: (\therefore \: EF = AB)  }

\small\bold{ =  \frac{1}{2} \times ar(rect. \: ABCD) }

\small\bold\purple{again \: ar(\triangle \: AOB) + ar(\triangle \: COD)}

\small\bold{ = ( \frac{1}{2} \times AB \times OL) + ( \frac{1}{2} \times DC \times \: OM) =  \frac{1}{2} \times Ab \times (OL + OM) \:  \:  \: (\therefore \: DC = AB)  } \\

\small\bold{ =  \frac{1}{2} \times AB \times LM =  \frac{1}{2} \times AB \times AD \:  \:  \:  \: (\therefore \: LM = AD)} \\

\small\bold{  = \frac{1}{2} \times ar(rect. \: ABCD).}

\small\bold\purple{\therefore \: ar(\triangle \: AOD) + ar(\triangle \: BOC) = ar(\triangle \: AOB) + ar(\triangle \: COD).} \\

━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions