A point O is in the interior of
Δ ABC .Prove that 2(OA +OB +OC )> AB +BC +AC
Answers
Answer:
your answer is
Step-by-step explanation:
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABD
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCOD
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCODCD+OD>OC......[2]
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCODCD+OD>OC......[2]Adding [1] and [2] we get
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCODCD+OD>OC......[2]Adding [1] and [2] we getAB+AD+CD+OD>BO+OD+OC
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCODCD+OD>OC......[2]Adding [1] and [2] we getAB+AD+CD+OD>BO+OD+OC⇒AB+AC+OD>BO+OD+OC
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCODCD+OD>OC......[2]Adding [1] and [2] we getAB+AD+CD+OD>BO+OD+OC⇒AB+AC+OD>BO+OD+OC⇒AB+AC>OB+OC.....(3)
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCODCD+OD>OC......[2]Adding [1] and [2] we getAB+AD+CD+OD>BO+OD+OC⇒AB+AC+OD>BO+OD+OC⇒AB+AC>OB+OC.....(3)Similarly
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCODCD+OD>OC......[2]Adding [1] and [2] we getAB+AD+CD+OD>BO+OD+OC⇒AB+AC+OD>BO+OD+OC⇒AB+AC>OB+OC.....(3)SimilarlyAB+BC>OA+OC.....(4)
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCODCD+OD>OC......[2]Adding [1] and [2] we getAB+AD+CD+OD>BO+OD+OC⇒AB+AC+OD>BO+OD+OC⇒AB+AC>OB+OC.....(3)SimilarlyAB+BC>OA+OC.....(4)And
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCODCD+OD>OC......[2]Adding [1] and [2] we getAB+AD+CD+OD>BO+OD+OC⇒AB+AC+OD>BO+OD+OC⇒AB+AC>OB+OC.....(3)SimilarlyAB+BC>OA+OC.....(4)AndAC+BC>OA+OB.....(5)
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCODCD+OD>OC......[2]Adding [1] and [2] we getAB+AD+CD+OD>BO+OD+OC⇒AB+AC+OD>BO+OD+OC⇒AB+AC>OB+OC.....(3)SimilarlyAB+BC>OA+OC.....(4)AndAC+BC>OA+OB.....(5)Adding (3),(4)and (5) we get
Let O be a inner point of a triangle ABC. We are to prove that OA+OB+OC<AB+BC+CA*Construction"BO is produced to intersect AB at D.For ΔABDAB+AD>BD⇒AB+AD>BO+OD.....[1]For ΔCODCD+OD>OC......[2]Adding [1] and [2] we getAB+AD+CD+OD>BO+OD+OC⇒AB+AC+OD>BO+OD+OC⇒AB+AC>OB+OC.....(3)SimilarlyAB+BC>OA+OC.....(4)AndAC+BC>OA+OB.....(5)Adding (3),(4)and (5) we get2(AC+BC+
Answer:
oa + ob > ab
ob + oc > bc
oa + oc > ac
add them
2(oa + ob + oc ) > ab + bc + ca