A point P on the y-axis divides the line segment joining the points (4,5) and (-3,3) in a certain ratio . find the coordinates of the point P
Answers
Answer:
Let the ratio in which line segment is divided be "k:1"
Then by the section formula,the coordinates of the point P are [(-3k+4)/(k+1) , (3k+5)/(k+1)]
This point lies on the y-axis and on y-axis,the abscissa is 0.
Therefore, (-3k+4)/(k+1) = 0
Solving this equation, we get k=4/3
That is,the ratio is 4:3.Putting the value of k=4,we get the point of intersection as (0,17/5)
So coordinates of pt. P are (0,17/5)
Answer:
here is your answer
Step-by-step explanation:
Lettheratiobek:1.
Then \: by\: the \; section \: formula ,\:theThenbythesectionformula,the
coordinates \: of \:the \: point \: whichcoordinatesofthepointwhich
divides\: joining \: of \: the \: points \: (4,5)dividesjoiningofthepoints(4,5)
and \: (-3,3) \: in \: the \: ratio \: k:1 \: areand(−3,3)intheratiok:1are
Here, x_{1} = 4, y_{1} = 5 , x_{2} = -3, y_{2} = 3Here,x
1
=4,y
1
=5,x
2
=−3,y
2
=3
\Big( \frac{kx_{2} + 1\times x_{1}}{k+1}, \frac{ky_{2} + 1\times y_{1}}{k+1}\Big)(
k+1
kx
2
+1×x
1
,
k+1
ky
2
+1×y
1
)
= \Big( \frac{k\times (-3) + 4 }{k+1} , \frac{ k \times 3 + 5 }{k+1} \Big) \: --(1)=(
k+1
k×(−3)+4
,
k+1
k×3+5
)−−(1)
This \:point \: lies \:on \: the \: y - axis , andThispointliesonthey−axis,and
we \: know \:that \: on \: the \: y-axis \: theweknowthatonthey−axisthe
abscissa \: is \: '0'abscissais
′
0
′
\therefore \frac{-3k+1}{k+1} = 0∴
k+1
−3k+1
=0
\implies -3k + 1 = 0⟹−3k+1=0
\implies -3k = -1⟹−3k=−1
\implies k = \frac{-1}{-3}⟹k=
−3
−1
\implies k = \frac{1}{3}⟹k=
3
1
So,the \: ratio \: is \: k : 1 = 1 : 3So,theratioisk:1=1:3
/* Putting the value of k in equation (1) ,we get Coordinates of point P */
P = \Big( \frac{\frac{1}{3} \times (-3) + 4 }{\frac{1}{3} +1} , \frac{ \frac{1}{3} \times 3 + 5 }{\frac{1}{3}+1} \Big)P=(
3
1
+1
3
1
×(−3)+4
,
3
1
+1
3
1
×3+5
)
= \Big( \frac{ -3+12 }{1+3} , \frac{3+15}{1+3}\Big)=(
1+3
−3+12
,
1+3
3+15
)
= \Big( \frac{9}{4} , \frac{18}{4}\Big)=(
4
9
,
4
18
)
= \Big( \frac{9}{4}, \frac{9}{2} \Big)=(
4
9
,
2
9
)