Physics, asked by deepkaurchohan5225, 10 months ago

A point source of light is kept at a distance of 15 cm from a converging lens, on its optical axis. A sharp image is formed on the screen which is placed at distance 20 cm from lens. Find the focal length of lens.

Answers

Answered by Anonymous
71

Given :

▪ Distance of object = 15cm

▪ Distance of image = 20cm

▪ Type of lens : converging (convex)

To Find :

▪ Focal length of lens.

SoluTioN :

☞ f is positive for converging (convex) lens.

☞ f is negative for diverging (concave) lens.

\dashrightarrow\sf\:\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}\\ \\ \dashrightarrow\sf\:\dfrac{1}{20}-\dfrac{1}{(-15)}=\dfrac{1}{f}\\ \\ \dashrightarrow\sf\:\dfrac{1}{20}+\dfrac{1}{15}=\dfrac{1}{f}\\ \\ \dashrightarrow\sf\:\dfrac{3+4}{60}=\dfrac{1}{f}\\ \\ \dashrightarrow\sf\:f=\dfrac{60}{7}\\ \\ \dashrightarrow\underline{\boxed{\bf{\blue{f=8.57\:cm}}}}\:\orange{\bigstar}

Extra Dose :

  • X-coordinate of centre of curvature and focus of convex lens are negative and those for concave lens are positive.
  • In case of lenses, -ve sign of v indicates virtual image and +ve sign of v indicates real image.
Answered by Anonymous
50

Given:-

\sf\ Distance \: of\:object  :- u =15cm

\sf\ Distance\:of\:image:- v=20cm

To Find:-

\sf\ Focal\:length\:of\:lens

Required Solution:-

\small\underline\bold\purple{Formula\:used\:here:-}

\dashrightarrow\: \sf\Large\ \frac{1}{f}=\frac{1}{v}-\frac{1}{u}

\dashrightarrow\: \sf\Large\ \frac{1}{f}=\frac{1}{20} -\frac{1}{(-15)}

\dashrightarrow\: \sf\Large\ \frac{1}{f}=\frac{1}{20} +\frac{1}{15}

\dashrightarrow\: \sf\Large\ \frac{1}{f}=\frac{3\:+\:4}{60}

\dashrightarrow\: \sf\Large\ \frac{1}{f}=\frac{7}{60}

\dashrightarrow\: \sf\Large\ f=\frac{60}{7}

\dashrightarrow\: \underline{\boxed{\bf{\orange{f=8.5714cm}}}}

Similar questions